岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3291-3300.doi: 10.16285/j.rsm.2021.0567

• 基础理论与实验研究 • 上一篇    下一篇

厦门花岗岩残积土的压缩变形特性及其微观机制

王港1, 2,张先伟1,刘新宇1, 2,徐倚晴1, 2,芦剑锋1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉430071;2. 中国科学院大学,北京 100049
  • 收稿日期:2021-04-14 修回日期:2021-08-13 出版日期:2021-12-13 发布日期:2021-12-14
  • 通讯作者: 张先伟,男,1982年生,博士,副研究员,主要从事特殊土土力学基础研究及工程应用方面的研究。E-mail: xwzhang@whrsm.ac.cn E-mail:wanggang191@mails.ucas.ac.cn
  • 作者简介:王港,男,1997年生,博士研究生,主要从事特殊土土力学等方面的研究
  • 基金资助:
    国家自然科学基金(No.41972285,No.41672293);中国科学院青年创新促进会项目(No.2018363);湖北省杰出青年科学基金(No.2020CFA103);长江科学院开放研究基金(No.CKWV2021884/KY)。

Compression characteristics and microscopic mechanism of Xiamen granite residual soil

WANG Gang1, 2, ZHANG Xian-wei1, LIU Xin-yu1, 2, XU Yi-qing1, 2, LU Jian-feng1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-04-14 Revised:2021-08-13 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41972285, 41672293), the Youth Innovation Promotion Association CAS (2018363), the Science Fund for Distinguished Young Scholars of Hubei Province (2020CFA103) and CRSRI Open Research Program (CKWV2021884/KY).

摘要: 研究花岗岩残积土压缩变形过程中微观结构的演化规律,对于深入理解风化土的变形机制、结构特性对其力学性质的影响,建立微观结构特征与宏观力学行为的联系均有重要意义。对厦门花岗岩残积土原状样与重塑样进行了一维压缩试验,对不同荷载作用下的试样进行扫描电子显微镜测试,提取表征颗粒团聚体与孔隙的体积、形状与定向性等微观结构参数,对比分析这些微观结构参数在压缩变形过程中变化的规律,提出了花岗岩残积土的压缩变形机制。结果表明:厦门花岗岩残积土具有明显的胶结效果,压缩曲线呈现明显的弯点,当荷载超过拟先期固结压力后,压缩曲线逐渐向固有压缩曲线(ICL)靠近;原状土的压缩变形主要由大孔隙压缩引起,而重塑土是大、中孔隙向小孔隙转化;原状土的颗粒团聚体具有相对较差的圆度,随着压缩变形逐渐增大,颗粒团聚体形状向偏圆形发展;压缩变形会引起颗粒团聚体向垂直于加载应力方向偏转,造成颗粒团聚体定向性增加。花岗岩残积土的压缩变形机制可归结为微观结构的不断自我调整以趋达到稳定有序状态。该研究可为我国南方地区的花岗岩残积土的基础变形分析提供理论支撑。

关键词: 花岗岩残积土, 压缩, 微观结构, 定向性, 孔隙, 胶结

Abstract: Study on the microstructural change of granite residual soils (GRS) during compression is important to comprehend the influence of deformation mechanism and structure characteristics on soil mechanical characteristics and to establish relations between macroscopic behavior and microstructural characteristics of weathered soils. One-dimension compression tests were conducted on Xiamen GRS and scanning electron microscopy (SEM) was used to investigate samples under different loading conditions. Structural parameters enabling the quantification of particle assemblage and pore volume, morphologies and preferred orientations of GRS were gained. This study investigated these parameters during compression procedures, then the mechanisms of compression deformation were proposed. The results indicate that the effects of cementation played an important role on GRS. The compression curve showed an obvious turning point and approached ICL gradually after the load exceeding the pre-consolidation pressure. The compression of large pores contributed to deformation of natural soils, while deformation of reconstituted soils was mainly dependent on the transformation from large pores and meso pores to small pores. Particle assemblages of natural soils showed relatively low roundness value, while after one-dimension compression test, the particle assemblage shape showed remarkable tendency towards medium roundness. Compression deformation resulted in deflection of particle assemblages perpendicular to loading, facilitating the preferred orientation. The deformation mechanism of GRS is that the microstructure constantly rearranges and reorients into a more stable and orderly structure. The research provides theoretical support for foundation deformation analysis related to GRS.

Key words: granite residual soil, compression, microstructure, preferred orientation, pore, cementation

中图分类号: 

  • TU441
[1] 谈云志, 王媛, 占少虎, 左清军, 明华军. 纳米氧化硅充填红黏土团粒内孔隙的收缩响应[J]. 岩土力学, 2022, 43(2): 358-364.
[2] 田佳丽, 王惠民, 刘星星, 向雷, 盛金昌, 罗玉龙, 詹美礼. 考虑不同尺度孔隙压缩敏感性的 砂岩渗透特性研究[J]. 岩土力学, 2022, 43(2): 405-415.
[3] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[4] 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
[5] 阙相成, 朱珍德, 牛子豪, 黄浩楠, . 不同截面柱状节理岩体变形及强度各向异性研究[J]. 岩土力学, 2021, 42(9): 2416-2426.
[6] 葛苗苗, 李宁, 盛岱超, 朱才辉, PINEDA Jubert, . 水力耦合作用下非饱和压实黄土 细观变形机制试验研究[J]. 岩土力学, 2021, 42(9): 2437-2448.
[7] 林志强, 钱建固, 时振昊, . 毛细−吸附作用下考虑孔隙比影响的单/双峰 土体持水曲线模型[J]. 岩土力学, 2021, 42(9): 2499-2506.
[8] 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524.
[9] 冷先伦, 王川, 庞荣, 盛谦, . 透明胶结土材料强度特性的试验研究[J]. 岩土力学, 2021, 42(8): 2059-2068.
[10] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
[11] 仇超, 李传勋, 李红军, . 单级等速加载下高压缩性软土 非线性大应变固结解析解[J]. 岩土力学, 2021, 42(8): 2195-2206.
[12] 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943.
[13] 王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970.
[14] 周禹良, 侯公羽, 袁东锋, 李生生, 丁振宇, . 溶蚀孔隙型白云岩浆−水径向扩散模型及工程应用[J]. 岩土力学, 2021, 42(7): 1983-1994.
[15] 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[4] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[5] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[10] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .