岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 358-364.doi: 10.16285/j.rsm.2021.0440

• 基础理论与实验研究 • 上一篇    下一篇

纳米氧化硅充填红黏土团粒内孔隙的收缩响应

谈云志,王媛,占少虎,左清军,明华军   

  1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 收稿日期:2021-03-28 修回日期:2021-11-28 出版日期:2022-02-11 发布日期:2022-02-22
  • 作者简介:谈云志,男,1979年生,博士,教授,主要从事特殊土方面的教学与科研工作。
  • 基金资助:
    国家自然科学基金(No. 51579137,No. 51979150);湖北省优秀中青年科技创新团队计划项目(No. T201803);湖北省“111引智基地”项目(No. 2018-19-1)

Shrinkage behavior responses to nano-silica filling pores in aggregate laterite

TAN Yun-zhi, WANG Yuan, ZHAN Shao-hu, ZUO Qing-jun, MING Hua-jun   

  1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2021-03-28 Revised:2021-11-28 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51579137, 51979150), the Youth Innovation Team Project of Hubei Province (T201803) and the 111 Project of Hubei Province (2018-19-1).

摘要: 红黏土易失水收缩开裂,不仅降低了其整体强度,还为雨水入渗提供了通道,加剧了其承载能力的弱化。因此,如何抑制红黏土收缩,成为解决问题的关键。纳米氧化硅颗粒尺寸极其细小,隶属纳米范畴。充分发挥纳米氧化硅的尺寸优势,以期纳米氧化硅微粒能够进入红黏土团粒内,抵抗红黏土的失水收缩行为。为此,选用不同干质量掺入比(纳米氧化硅:红黏土分别为0:100、2:100、3.5:100、5:100、6.5:100),将纳米氧化硅混入红黏土后压实成型(干密度1.44 g/cm3和1.46 g/cm3)。比较压实红黏土-纳米氧化硅混合物的收缩特性与孔隙分布情况。试验发现,纳米氧化硅可以抑制红黏土的收缩行为;而且随着掺入量增加,其缩限值也逐渐提高。红黏土-纳米氧化硅混合物的表观形貌照片显示,纳米氧化硅掺量大于5%时,红黏土团粒内孔隙赋存有大量纳米氧化硅颗粒。同时,孔隙分布曲线还表明,分布于孔径0.03 ?m的孔隙明显减少,说明纳米氧化硅主要充填孔径大于0.03 ?m的孔隙。纳米氧化硅改善红黏土的收缩性属于物理方法,有别于石灰处治等化学方式,更具有环境友好的潜在优势。

关键词: 红黏土, 纳米氧化硅, 孔隙, 收缩, 填充

Abstract: The laterite may form cracks due to shrinkage for dehydration. These cracks not only reduce the overall strength, but also provide infiltration channel for rainwater, which intensifies the weakening of its bearing capacity. Therefore, how to inhibit laterite shrinkage is a key problem for engineering applications. The nano-silica particles are extremely fine in size and belong to the nano category. It is proposed to fully utilize the size advantage of nano-silica, so that nano-silica particles can enter the laterite aggregates and resist the shrinkage behavior of laterite caused by dehydration. Therefore, different dry mixing ratios (i.e. nano-silica: laterite = 0: 100, 2: 100, 3.5: 100, 5: 100, and 6.5: 100) were programmed, and nano-silica was mixed with laterite for compaction (dry density is 1.44 g/cm3 and 1.46 g/cm3 respectively). Shrinkage characteristics and pore distribution of compacted laterite-nano-silica mixture were compared. It was found that nano-silica could inhibit the shrinkage of laterite, and the shrinkage limit was also increased by the mixing ratio rising. Besides, plenty of nano-silica particles were found in the pores while the mixing ratio was greater than 5% by means of apparent morphology images. Meanwhile, the pore distribution curve also showed that the pores with diameter at 0.03 ?m reduced significantly, which indicated that nano-silica mainly filled the pores with diameter greater than 0.03 ?m. Adding nano-silica into laterite is a physical method to improve the shrinkage properties, which is different from the chemical methods such as lime treatment and has potential advantages to environmental protection.

Key words: laterite, nano-silica, pore, shrinkage, filling

中图分类号: 

  • TU 446
[1] 杜宇, 刘松玉, 祝刘文, 邹海峰, 蔡国军, . 基于孔压静力触探试验的水运工程土分类方法研究[J]. 岩土力学, 2022, 43(5): 1353-1363.
[2] 王燕星, 李驰, 葛晓东, 高利平, . 黄河流域内蒙古段砒砂岩风化土微生物 矿化改良的试验研究[J]. 岩土力学, 2022, 43(3): 708-718.
[3] 张文博, 柏巍, 孔令伟, 樊恒辉, 岳秀, . 淋溶时间对红黏土物理力学特性的影响[J]. 岩土力学, 2022, 43(2): 443-452.
[4] 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
[5] 葛苗苗, 李宁, 盛岱超, 朱才辉, PINEDA Jubert, . 水力耦合作用下非饱和压实黄土 细观变形机制试验研究[J]. 岩土力学, 2021, 42(9): 2437-2448.
[6] 林志强, 钱建固, 时振昊, . 毛细−吸附作用下考虑孔隙比影响的单/双峰 土体持水曲线模型[J]. 岩土力学, 2021, 42(9): 2499-2506.
[7] 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524.
[8] 刘鑫, 许宏发, 范鹏贤, 耿汉生, 莫家权, 王德荣. 围压下岩石填充裂隙对应力波衰减规律的试验研究[J]. 岩土力学, 2021, 42(8): 2099-2108.
[9] 王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970.
[10] 周禹良, 侯公羽, 袁东锋, 李生生, 丁振宇, . 溶蚀孔隙型白云岩浆−水径向扩散模型及工程应用[J]. 岩土力学, 2021, 42(7): 1983-1994.
[11] 刘樟荣, 叶为民, 崔玉军, 朱合华, 王琼, 陈永贵, . 基于微孔填充和毛细管凝聚理论的持水曲线模型[J]. 岩土力学, 2021, 42(6): 1549-1556.
[12] 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611.
[13] 陈昌富, 杜成, 朱世民, 何仕林, 张根宝, . 红黏土土层锚杆界面剪切应力松弛试验及其模型[J]. 岩土力学, 2021, 42(5): 1201-1209.
[14] 刘杰, 张瀚, 王瑞红, 王芳, 何卓文, . 冻融循环作用下砂岩层进式损伤劣化规律研究[J]. 岩土力学, 2021, 42(5): 1381-1394.
[15] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .