岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1381-1394.doi: 10.16285/j.rsm.2020.0803

• 基础理论与实验研究 • 上一篇    下一篇

冻融循环作用下砂岩层进式损伤劣化规律研究

刘杰1, 2, 张瀚2,王瑞红1, 2,王芳2,何卓文2   

  1. 1. 三峡大学 湖北省地质灾害防治工程技术研究中心,湖北 宜昌 443002;2. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 收稿日期:2020-06-11 修回日期:2021-01-08 出版日期:2021-05-11 发布日期:2021-05-08
  • 通讯作者: 王瑞红,1981年生,女,博士,教授,博士生导师,主要从事卸荷岩体力学特性及岩土工程稳定性研究。E-mail:43604258@qq.com E-mail:liujiea@126.com
  • 作者简介:刘杰,1979年生,男,博士,教授,博士生导师,主要从事岩土工程稳定分析和支护技术研究。
  • 基金资助:
    国家自然科学基金项目(No. 52079071,No. 51979151);三峡大学三峡库区地质灾害教育部重点实验室开放基金(No. 2020KDZ07,No. 2020KDZ08);广西岩土力学与工程重点实验室开放基金(桂科能20-Y-KF-02)。

Investigation of progressive damage and deterioration of sandstone under freezing-thawing cycle

LIU Jie1, 2, ZHANG Han2, WANG Rui-hong1, 2, WANG Fang2, HE Zhuo-wen2   

  1. 1. Hubei Engineering Technology Research Center of Geological Hazard Prevention, Three Gorges University, Yichang, Hubei 443002, China; 2. Key Laboratory of Geological Hazards in Three Gorges Reservoir Area, Ministry of Education, Three Gorges University, Yichang, Hubei 443002, China
  • Received:2020-06-11 Revised:2021-01-08 Online:2021-05-11 Published:2021-05-08
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52079071,51979151), the Open Fund of Key Laboratory of Geological Hazards in Three Gorges Reservoir Area of Ministry of Education, Three Gorges University(2020KDZ07, 2020KDZ08) and the Open Fund of Guangxi Key Laboratory of Geomechanics & Geotechnical Engineering(20-Y-KF-02)。

摘要: 试验得到了试样直径、质量衰减量随冻融循环次数的变化规律,指出80次冻融循环是石英砂岩直径、质量变化线的拐点。提出了层进式损伤的CT精准识别技术方法,定义了试样主要损伤区并将其细分,分析了表层剥落前与剥落后的两阶段层进式冻融损伤过程,建立了CT值与弹性模量、孔隙率线性互推公式。分析认为:(1)40次冻融循环后,最外侧圈层弹性模量值为0,此时CT值不为0,圈层未剥落;(2)80次冻融循环后,最外侧圈层CT值为0,此时圈层孔隙率最大,圈层剥落;(3)试样内部圈层第2阶段劣化程度显著大于第1阶段劣化程度;在此基础上,提出了外圈层的束箍效应和内圈层的加速劣化效应,并从力学机制上进行了阐述。结合冻融循环次数下的孔隙率变化、弹模损失率变化、细观孔隙变化图像进一步定量阐明层进式损伤的发育演化规律。基于弹性模量、孔隙率分别随冻融循环次数变化规律,定义冻融弹性模量劣化因子 ,结合层进式区域划分,构建层进式损伤弹性模量劣化预测公式,并与实测值对比验证了上述方法的可行性。

关键词: CT精准识别技术, 层进式冻融损伤, 束箍效应, 细观孔隙变化, 弹性模量劣化因子

Abstract: The variations of the diameter and mass attenuation of rock samples with the number of freezing-thawing cycles are obtained, and it is pointed out that 80 freezing-thawing cycles are the inflection points of the variation lines of diameter and mass of quartz sandstone. A technical method for the accurate CT identification of progressive damage is proposed, and the main damage areas of the sample are defined and subdivided. Moreover, the freezing-thawing damage model of progressive damage at stages before and after spalling is also established. Linear relationships between CT value, elastic modulus and porosity are established, and it is concluded that: (1) After 40 freezing-thawing cycles, the elastic modulus of the outermost ring layer is 0, and the CT value is not 0 at this time. Additionally, the ring layer doesn’t peel off. (2) After 80 freezing-thawing cycles, the CT value of the outermost layer is 0. Meanwhile, the porosity of the layer is the largest and the layer is peeling off. (3) The deterioration of the inner layer of the sample at the second stage is significantly greater than that at the first stage. According to this finding, the bundle hoop effect of the outer layer and the accelerated degradation effect of the inner layer are proposed, which can also be explained based on the mechanical mechanism. On the basis of images of changes in porosity, loss rate of elastic modulus and mesopore after several freezing-thawing cycles, the development and evolution of progressive damage are further quantitatively illustrated. Based on the variation law of elastic modulus and porosity with the number of freezing-thawing cycles, respectively, the degradation factor “ ” of the freezing-thawing elastic modulus is defined, and a formula for predicting the elastic modulus degradation of progressive damage is also established based on the zone division of progressive damage. Finally, the feasibility of the above method is verified by comparing the calculated values with the measured values.

Key words: precise CT identification technology, progressive freezing-thawing damage, bundle hoop effect, mesopore variation, degradation factor of elastic modulus

中图分类号: 

  • TU 411
[1] 仇超, 李传勋, 李红军, . 单级等速加载下高压缩性软土 非线性大应变固结解析解[J]. 岩土力学, 2021, 42(8): 2195-2206.
[2] 马成昊, 朱长歧, 刘海峰, 崔翔, 王天民, 姜开放, 易明星, . 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058.
[3] 徐华, 周廷宇, 王歆宇, 张杰, 张小波, 刘雨辰, . 川藏铁路红层改良路基填料压缩试验 与颗粒流模拟研究[J]. 岩土力学, 2021, 42(8): 2259-2268.
[4] 周中, 张俊杰, 张称呈, 龚琛杰. 泥水盾构泥浆渗透-扩散时空演化解析模型[J]. 岩土力学, 2021, 42(8): 2185-2194.
[5] 刘志鹏, 孔纲强, 文磊, 王志华, 秦红玉, . 砂土地基中倾斜螺旋桩群桩上拔与水平 承载特性模型试验[J]. 岩土力学, 2021, 42(7): 1944-1950.
[6] 刘新荣, 许彬, 周小涵, 谢应坤, 何春梅, 黄俊辉, . 软弱层峰前循环剪切宏细观累积损伤机制研究[J]. 岩土力学, 2021, 42(5): 1291-1303.
[7] 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253.
[8] 沈扬, 冯照雁, 邓珏, 陈锴嘉, 许俊红, . 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290.
[9] 李跃, 徐卫亚, 易魁, 谢伟超, 张强, 孟庆祥, . 堆积体滑带土非饱和-饱和渗透特性试验研究[J]. 岩土力学, 2021, 42(5): 1355-1362.
[10] 汪时机, 骆赵刚, 李贤, 文桃. 考虑局部含水率效应的浅层土体开裂 过程与力学机制分析[J]. 岩土力学, 2021, 42(5): 1395-1403.
[11] 孙增春, 郭浩天, 刘汉龙, 吴焕然, 肖杨, . 基于扰动状态概念的饱和黏土热弹塑性本构模型[J]. 岩土力学, 2021, 42(5): 1325-1334.
[12] 雷学文, 丁豪, 王新志, 沈建华, 孟庆山, . 钙质粉土的固结特性试验研究[J]. 岩土力学, 2021, 42(4): 909-920.
[13] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[14] 任华平, 刘希重, 宣明敏, 叶新宇, 李强, 张升, . 循环荷载作用下击实粉土累积塑性变形研究[J]. 岩土力学, 2021, 42(4): 1045-1055.
[15] 朱秦, 苏立君, 刘振宇, 杨世豪, . 颗粒迁移作用下宽级配土渗透性研究[J]. 岩土力学, 2021, 42(1): 125-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[4] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[5] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[6] 樊恒辉,高建恩,吴普特,娄宗科. 水泥基土壤固化剂固化土的物理化学作用[J]. , 2010, 31(12): 3741 -3745 .
[7] 张成平,张顶立,骆建军,王梦恕,吴介普. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. , 2009, 30(6): 1861 -1866 .
[8] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[9] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[10] 张雪婵 ,龚晓南 ,尹序源 ,赵玉勃. 杭州庆春路过江隧道江南工作井监测分析[J]. , 2011, 32(S1): 488 -0494 .