岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3315-3327.doi: 10.16285/j.rsm.2021.0376

• 基础理论与实验研究 • 上一篇    下一篇

砂质土体脉动注浆浆−土耦合动力响应分析

窦金熙1, 2,张贵金1, 2,张熙1, 2,范伟中1, 2,宋伟1, 2   

  1. 1. 长沙理工大学 水利与环境工程学院,湖南 长沙 410114;2. 长沙理工大学 水沙科学与水灾害防治湖南省重点实验室,湖南 长沙 410114
  • 收稿日期:2021-03-17 修回日期:2021-07-15 出版日期:2021-12-13 发布日期:2021-12-14
  • 通讯作者: 张贵金,男,1964年生,博士,教授,主要从事水利工程新材料、水利工程安全评价和岩土工程风险分析研究。E-mail: gjzhang84@126.com E-mail:doujinx@163.com
  • 作者简介:窦金熙,男,1989年生,博士研究生,主要从事水利工程地基处理研究与数值模拟
  • 基金资助:
    国家自然科学基金(No.51279019);中国电力投资集团公司重大科技计划项目(No.2011-036-WLDKJ-X);湖南省重大水利科技项目(XSKJ2018179-32)。

Dynamic response analysis of slurry-soil coupling in sandy soil based on pulsating grouting

DOU Jin-xi1, 2, ZHANG Gui-jin1, 2, ZHANG Xi1, 2, FAN Wei-zhong1, 2, SONG Wei1, 2   

  1. 1. School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China; 2. Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha University of Science and Technology, Changsha, Hunan 410114, China
  • Received:2021-03-17 Revised:2021-07-15 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51279019), and the Major Science and Technology Program of China Power Investment Corporation(2011-036-WLDKJ-X) and the Key Water Resources Science and Technology Project of Hunan Province(XSKJ2018179-32).

摘要: 脉动注浆作为解决松散土体注浆的新工艺,尽管已经得到一定应用,但脉动荷载作用下浆?土耦合的动力响应研究,远滞后于工程实践。基于脉动注浆原理,设计了一套脉动注浆监测响应系统,设定不同脉动周期压力和土体孔隙比,研究不同脉动周期荷载作用砂质土体的响应规律;依托COMSOL Multiphysics平台结合MATLAB,二次开发了适用于模拟脉动注浆浆?土耦合应力?应变的程序;通过物理试验对比现有注浆地层响应理论,验证了数值模拟适用性。研究结果表明:当脉动压力增大,土体的孔隙比不变时,骨架力承担脉动应力传递速率增快;脉动频率越大,土体内部应力越大;脉动压力会破坏恒载作用下土体形成的强弱力链,导致应力传递均布;土体的孔隙比越大,土体越松散,脉动频率越大对于浆液在土体内部运移越有利。脉动注浆相比于稳压注浆会导致应力区域集中,应力区域集中造成的浆液渗透与挤密注浆,有利于降低注浆过程地层抬升位移;相比稳压注浆的浆液易沿小主应力或者地层缺陷处浆液持续劈裂,脉动注浆浆液扩散更可控。数值模拟方法为不同脉动施工参数、地层条件以及注浆材料下,浆液扩散规律研究提供了新思路,研究结论可为工程实践提供较强的指导意义。

关键词: 脉动注浆, 砂质土, 动力响应, 黏土?水泥浆液, 浆?土耦合

Abstract: As a new grouting technology, pulsating grouting has been successfully applied to solve the problem of loose soil grouting. However, the dynamic response of slurry-soil coupling under pulsating load lags far behind the engineering practice. Based on the theory of pulsating grouting, a monitor system of pulsating grouting was designed. The response laws of sandy soil under different pulsating periodic loads were investigated by setting different pulsating periodic pressures and soil porosity ratios. Then through COMSOL Multiphysics platform and MATLAB, a program for simulating the stress-strain of slurry-soil coupling was developed. The applicability of numerical simulation was verified by comparing the existing grouting response theory with physical tests. The results show that when the pulsating pressure increases and the pore ratio of soil remains constant, the transfer rate of the pulsating stress borne by the skeleton force increases rapidly. The higher the pulsation frequency, the greater the soil stress. The fluctuating pressure will destroy the strong and weak force chain formed by the soil under constant load, resulting in the uniform stress transfer. The larger the pore ratio, the looser the soil and the higher the pulsation frequency, the more favorable the slurry migration in the soil. Compared with stable pressure grouting, pulsating grouting can lead to the stress concentration. Correspondingly, the slurry penetration and compaction caused by the stress concentration are beneficial to reduce the formation uplift displacement in the grouting process. Compared with stable pressure grouting, by which the grout is easy to split continuously along the small principal stress or formation defect, the grout diffusion induced by pulsating grouting is more controllable. In addition, the numerical simulation method provides a new idea for the slurry diffusion laws under different pulsating construction parameters, formation conditions and grouting materials. The research conclusions can provide a strong guiding significance for engineering practice.

Key words: pulsating grouting, sandy soil, dynamic response, clay-cement slurry, slurry-soil coupling

中图分类号: 

  • TU470
[1] 赵爽, 余俊, 刘新源, 胡钟伟. 悬臂式刚性墙动力响应解析研究[J]. 岩土力学, 2022, 43(1): 152-159.
[2] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[3] 张玲, 欧强, 赵明华, 丁选明, 刘健飞, . 移动荷载下土工加筋路堤动力响应特性数值分析[J]. 岩土力学, 2021, 42(10): 2865-2874.
[4] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
[5] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[6] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[7] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[8] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[9] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[10] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[11] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[12] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[13] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[14] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[15] 陈士海, 宫嘉辰, 胡帅伟, . 爆破荷载下围岩及支护锚杆动力响应特征 模型试验研究[J]. 岩土力学, 2020, 41(12): 3910-3918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 师旭超,韩 阳. 卸荷作用下软黏土回弹吸水试验研究[J]. , 2010, 31(3): 732 -736 .
[4] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[5] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[6] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[7] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[8] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[9] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .
[10] 金解放 ,李夕兵 ,殷志强 ,邹 洋. 循环冲击下波阻抗定义岩石损伤变量的研究[J]. , 2011, 32(5): 1385 -1393 .