岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3238-3248.doi: 10.16285/j.rsm.2021.0780

• 基础理论与实验研究 • 上一篇    下一篇

压裂液高压渗滤对砂岩基质损伤演化的 细观力学分析

吴飞鹏1,范贤章1,徐尔斯2,杨涛3,颜丙富1,刘静1   

  1. 1. 中国石油大学(华东) 石油工程学院,山东 青岛 266580;2. 中国石油西南油气田公司页岩气研究院,四川 成都 610056; 3. 中国石油新疆油田分公司勘探开发研究院,新疆 克拉玛依 834000
  • 收稿日期:2021-05-26 修回日期:2021-08-28 出版日期:2021-12-13 发布日期:2021-12-14
  • 作者简介:吴飞鹏,男,1983年生,博士,副教授,主要从事复杂油气物理−化学强化开采相关技术研究工作
  • 基金资助:
    国家自然科学基金(No.51874339,No.51904320);国家重点研发计划项目(No.2020YFA0711800)

Micromechanical analysis of damage evolution of sandstone matrix by high pressure infiltration of fracturing fluid

WU Fei-peng1, FAN Xian-zhang1, XU Er-si2, YANG Tao3, YAN Bing-fu1, LIU Jing1   

  1. 1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; 2. Shale gas Research Institute, PetroChina Southwest Oil and Gas Field Company, Chengdu, Sichuan 610056, China; 3. Exploration and Development Research Institute, PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China
  • Received:2021-05-26 Revised:2021-08-28 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51874339, 51904320) and the National Key Research and Development Program of China(2020YFA0711800).

摘要: 水力压裂过程中压裂液在裂缝面的高压渗滤,会引起裂缝两侧孔隙压力场变化,导致岩石力学本构特征发生改变,并进一步影响水力裂缝的动态扩展。采用基于细观断裂的宏观损伤理论,借助直线型滑移裂纹模型,推导了可考虑孔隙内饱和流体压力作用的细观裂纹尖端应力强度因子模型;进而建立了饱和岩石应力?应变本构模型,并与室内饱和岩石压缩试验结果进行了对比分析;并利用该本构模型,评价了孔隙压力水平对饱和岩石力学性质和损伤增渗程度的影响规律。结果表明,所建本构模型可较好地表征孔隙压力变化对岩石力学性质的影响规律;岩石基质细观裂纹内的流体压力变化对岩石弹性模量和泊松比影响较小,但会大幅减小岩石开始发生塑性损伤的应力极限,弱化岩石抗压强度,减小裂缝两侧岩石受挤压而发生塑性形变的能量损耗,提高水力压裂能量利用率。压裂过程中裂缝周围的孔隙压力高于一定门限值后,会促进细观裂纹产生非稳态快速扩展,从而促进更多裂纹发生贯通串联,形成复杂裂缝网络,且可提高水力裂缝周围岩石的渗透率。所建立饱和岩石本构模型可为水力压裂引发岩石基质损伤增透的数学模拟提供一定理论支撑。

关键词: 水力压裂, 孔隙压力, 应力?应变本构模型, 细观裂纹

Abstract: In the process of hydraulic fracturing, the high-pressure infiltration of fracturing fluid on the fracture surface will cause the change of pore pressure field on both sides of the fracture, resulting in the change of mechanical characteristics of rock, and consequently affecting the propagation of hydraulic fractures. According to the macroscopic damage theory based on micro-fracture, the linear slip crack model was applied to develop the stress intensity factor model at the tip of the micro-crack considering the fluid pressure in the pores. Then the stress-strain constitutive model of saturated rock was established, and compared with the laboratory test results of saturated rock. The influence of pore pressure on the mechanical properties and damage-induced permeability was evaluated based on this constitutive model. The results show that the proposed constitutive model can better characterize the influence of pore pressure changes on rock mechanical properties. The pore pressure changes in micro-cracks have a relatively small effect on the rock elastic modulus and Poisson’s ratio, while it can greatly reduce the yield stress limit of plastic damage, weaken the compressive strength of the rock, reduce the energy loss of the plastic deformation of the rock on both sides of the fracture surface, and improve the energy utilization rate of hydraulic fracturing. When the pore pressure around the fracture is higher than a certain threshold value during fracturing process, it will promote the unsteady and rapid propagation of meso-cracks, thereby promot more cracks to be connected in series, form a complex fracture network, and enhace the rock permeability surrounding hydraulic fractures. The proposed constitutive model of saturated rock can provide support for the mathematical simulation of rock matrix damage and field practice.

Key words: hydraulic fracturing, pore pressure, stress-strain constitutive model, micro-crack

中图分类号: 

  • TU454
[1] 胡伟, 朱海涛, 蒋明镜, 李文昊, . 考虑能源土渗透性影响的水合物分解 超孔压特性研究[J]. 岩土力学, 2021, 42(10): 2755-2762.
[2] 邵长跃, 潘鹏志, 赵德才, 姚天波, 苗书婷, 郁培阳, . 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020, 41(7): 2411-2421.
[3] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[4] 武晋文, 冯子军, 梁栋, 鲍先凯, . 单轴应力下带钻孔花岗岩注入高温蒸汽 破坏特征研究[J]. 岩土力学, 2019, 40(7): 2637-2644.
[5] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[6] 张 帆, 马 耕, 冯 丹, . 大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897.
[7] 徐辰宇, 白 冰, 刘明泽, . 注CO2条件下花岗岩破裂特征的试验研究[J]. 岩土力学, 2019, 40(4): 1474-1482.
[8] 谷建晓, 杨钧岩, 王勇, 吕海波, . 基于南水模型的钙质砂应力−应变关系模拟[J]. 岩土力学, 2019, 40(12): 4597-4606.
[9] 李 栋, 卢义玉, 荣 耀, 周东平, 郭臣业, 张尚斌, 张承客, . 基于定向水力压裂增透的大断面瓦斯 隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369.
[10] 梁天成,刘云志,付海峰,严玉忠,修乃岭,王 臻. 多级循环泵注水力压裂模拟实验研究[J]. , 2018, 39(S1): 355-361.
[11] 颜荣涛, 张炳晖, 杨德欢, 李 杨, 陈星欣, 韦昌富, . 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12): 4421-4428.
[12] 程 万, 蒋国盛, 周治东, 魏子俊, 张 宇, 王炳红, 赵 林, . 水平井中多条裂缝同步扩展时裂缝竞争机制[J]. 岩土力学, 2018, 39(12): 4448-4456.
[13] 姜婷婷,张建华,黄 刚, . 煤岩水力压裂裂缝扩展形态试验研究[J]. , 2018, 39(10): 3677-3684.
[14] 刘志斌,张广清,晏小和,杨 潇,董昊然,许胜凡,. 裂纹前端低孔隙压力区对岩石断裂性质的影响[J]. , 2017, 38(S2): 75-81.
[15] 严成增. 模拟水压致裂的另一种二维FDEM-flow方法[J]. , 2017, 38(6): 1789-1796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950 -1955 .
[3] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[4] 高树生,钱根宝,王 彬,杨作明,刘华勋. 新疆火山岩双重介质气藏供排气机理数值模拟研究[J]. , 2011, 32(1): 276 -280 .
[5] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811 -814 .
[6] 孙德安,孟德林,孙文静,刘月妙. 两种膨润土的土-水特征曲线[J]. , 2011, 32(4): 973 -0978 .
[7] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[8] 褚福永 ,朱俊高 ,贾 华 ,安淑红. 粗粒土卸载-再加载力学特性试验研究[J]. , 2012, 33(4): 1061 -1066 .
[9] 卢 强,王占江,李 进,郭志昀,门朝举. 球面波加载下黄土线黏弹性本构关系[J]. , 2012, 33(11): 3292 -3298 .
[10] 王 苏,路德春,杜修力. 地下结构地震破坏静-动力耦合模拟研究[J]. , 2012, 33(11): 3483 -3488 .