岩土力学 ›› 2020, Vol. 41 ›› Issue (2): 453-460.doi: 10.16285/j.rsm.2019.0200

• 基础理论与实验研究 • 上一篇    下一篇

非饱和土拟二维平面应变固结问题的解析计算方法

程涛1, 2,晏克勤1,胡仁杰1,郑俊杰2,张欢1, 3, 陈合龙1,江志杰1, 3,刘强1, 3   

  1. 1. 湖北理工学院 土木建筑工程学院,湖北 黄石 435003;2. 华中科技大学 岩土与地下工程研究所,湖北 武汉 430074; 3. 三峡大学 土木与建筑学院,湖北 宜昌 443002
  • 收稿日期:2019-01-28 修回日期:2019-08-19 出版日期:2020-02-11 发布日期:2020-02-08
  • 作者简介:程涛,男,1975年生,博士,教授,主要从事岩土本构关系、尾矿混合土力学及资源化、岩土工程多场耦合数值分析等方面的研究。
  • 基金资助:
    湖北省优秀中青年科技创新团队项目(No. T201823);国家自然科学基金面上项目(No. 51478201);湖北省教育厅重点项目(No. D20134401);湖北省自科基金面上项目(No. 2012FKC14201);湖北理工学院重点科研项目(No. 13xjz03A)。

Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil

CHENG Tao1, 2, YAN Ke-qin1, HU Ren-jie1, ZHENG Jun-jie2, ZHANG Huan1, 3, CHEN He-long1, JIANG Zhi-jie1, 3, LIU Qiang1, 3   

  1. 1. School of Civil Engineering, Hubei Polytechnic University, Huangshi, Hubei 435003, China; 2. Institute of Geotechnical & Underground Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 3. College of Civil Engineering & Architecture, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2019-01-28 Revised:2019-08-19 Online:2020-02-11 Published:2020-02-08
  • Supported by:
    This work was supported by the Foundation for Innovative Research Team of Hubei Province(T201823), the General Program of National Natural Science Foundation of China (51478201), the Scientific Research Foundation of Hubei Provincial Education Department (D2013440), the General Program of Natural Science Foundation of Hubei Province (2012FKC14201) and the Key Program of Hubei Polytechnic University (13xjz03A).

摘要: 基于Fredlund非饱和土一维固结理论,建立了二维平面应变条件下的固结方程组,并得到了单层非饱和土平面应变条件下的解析解。基于相关理论,假设体变系数和渗透系数都为常量,同时考虑到瞬时加载条件下,沿着土体深度方向上产生均匀或者线性分布的初始超孔隙压力,建立了二阶二元偏微分方程组。求解时,引入函数方法来降低方程的阶数,然后通过分离变量法获得方程的通解。在此基础上,结合一个针对单面排水条件下二维平面应变问题案例,通过与数值解对比,验证了所提方法的正确性。并采用所提方法计算获得了二维平面下超孔隙水压力、气压力沿垂直和水平方向消散的等时线,通过计算对比,分析了不同线性分布情况下,初始超孔隙压力对固结消散过程的影响。研究结果表明:初始超孔隙压力的不同分布对超孔隙气压力消散的影响几乎可以忽略,而对超孔隙水压力消散的影响更大。

关键词: 非饱和土, 二维固结, 平面应变, 解析解, 初始超孔隙压力

Abstract: Based on the one-dimensional consolidation theory of unsaturated soil developed by Fredlund, the consolidation equations under two-dimensional plane strain are established, and the analytical solution of single-layer unsaturated soil under plane strain is obtained. Based on relevant theories, it is assumed that the volume change and the permeability coefficients are both constant, and the second-order binary partial differential equations are established, considering uniform or linear distribution of initial super-porosity pressure along the depth of the soil under the condition of instantaneous loading. To solve the equations, we first introduce the function method to reduce the order of the equation, and then obtain the general solution of the equation by variable separation method. Based on the solution, a case of two-dimensional plane strain problem under single-sided drainage conditions is investigated, and the correctness of the method is verified by numerical solution. The isochronal line of excess pore water and gas pressures dissipated in the vertical and horizontal directions in the two-dimensional plane is calculated by the proposed method. The influence of initial excess pore pressure on the consolidation and dissipation processes under different linear distributions is analyzed by calculation and comparison. The results show that the different distribution of initial excess pore pressure has an almost negligible effect on the dissipation of excess pore gas pressure, and has a great influence on the dissipation of excess pore water pressure.

Key words: unsaturated soil, two-dimensional consolidation, plane strain, analytical solution, initial excess pore pressure

中图分类号: 

  • TU 432
[1] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[2] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[3] 冯庆高, 蔡兵华, 冯晓腊, 袁祥, . 侧向有限越流承压含水层中非完整井非 稳定流模型及解析解[J]. 岩土力学, 2021, 42(1): 168-176.
[4] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 李盛, . 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186-192.
[5] 胡安峰, 周禹杉, 陈缘, 夏长青, 谢康和, . 结构性土一维非线性大应变固结半解析解[J]. 岩土力学, 2020, 41(8): 2583-2591.
[6] 宋朝阳, 赵成刚, 韦昌富, 马田田, . 非饱和土平均粒间应力的计算及应用[J]. 岩土力学, 2020, 41(8): 2665-2674.
[7] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[8] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[9] 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952.
[10] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[11] 李佳龙, 李钢, 于龙. 隔离非线性平面应变单元模型及其 在Drucker-Prager模型中的应用[J]. 岩土力学, 2020, 41(5): 1492-1501.
[12] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[13] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[14] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[15] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵炼恒,罗 强,李 亮,杨 峰,但汉成. 层状岩体边坡动态稳定性拟静力上限分析[J]. , 2010, 31(11): 3627 -3634 .
[2] 康永君,杨 军,宋二祥. 地震作用下边坡安全系数时程计算及参数研究[J]. , 2011, 32(1): 261 -268 .
[3] 李荣建,于玉贞,吕 禾,李广信. 饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究[J]. , 2009, 30(4): 897 -902 .
[4] 苏立君,廖红建,殷建华. 土钉抗拔试验过程中钉周土体应力变化研究[J]. , 2011, 32(S1): 124 -128 .
[5] 张亚民,马凤山,徐嘉谟,赵海军. 高应力区露天转地下开采岩体移动规律[J]. , 2011, 32(S1): 590 -0595 .
[6] 周万欢 ,殷建华. 上覆压力和剪胀作用下土钉抗拔的有限元模拟[J]. , 2011, 32(S1): 691 -0696 .
[7] 罗 浩,马建林,周洪燕,周 斌,李 峰. 沉降曲线预测方法-变形过程指数法[J]. , 2009, 30(S2): 374 -376 .
[8] 钱建固 ,黄茂松. 土体塑性各向异性的微宏观机理分析[J]. , 2011, 32(S2): 88 -93 .
[9] 朱崇辉 ,王增红 ,希罗科夫 B. H.. 单点击实法击实试验研究[J]. , 2012, 33(1): 60 -64 .
[10] 年廷凯 ,刘 成 ,万少石 ,张克利. 水位下降条件下黏性土边坡稳定性的图表法[J]. , 2012, 33(2): 569 -576 .