岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 77-87.doi: 10.16285/j.rsm.2021.0837

• 基础理论与实验研究 • 上一篇    下一篇

灰岩层面拉剪力学特性及层面起伏效应研究

岑夺丰,刘畅,黄达   

  1. 河北工业大学 土木与交通学院,天津 300401
  • 收稿日期:2021-06-03 修回日期:2022-02-18 出版日期:2022-06-30 发布日期:2022-07-13
  • 作者简介:岑夺丰,男,1987年生,博士,副教授,硕士生导师,主要从事岩体力学与工程方面的科研工作。
  • 基金资助:
    国家自然科学基金(No.41807279);河北省自然科学基金(No.E2019202336);天津市自然科学基金(No.20JCQNJC00980)。

Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation

CEN Duo-feng, LIU Chang, HUANG Da   

  1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
  • Received:2021-06-03 Revised:2022-02-18 Online:2022-06-30 Published:2022-07-13
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41807279), the Natural Science Foundation of Hebei Province(E2019202336) and the Natural Science Foundation of Tianjin Municipality(20JCQNJC00980).

摘要: 为了研究岩石不连续面的拉剪力学行为,采用自主研制的拉剪装置开展天然灰岩层面在法向拉应力作用下的直剪试验,分析了剪切应力−位移曲线、层面断裂形态及强度特征。拉剪应力作用下断裂面无摩擦粉碎区和局部崩裂。随法向拉应力的增加,剪切强度呈非线性减小。进一步,采用PFC模拟研究了锯齿状层面起伏特征对其拉剪破裂及强度特性的影响。随法向拉应力的增大,剪切裂纹减少而拉伸裂纹增多。当起伏角较小时,裂纹沿锯齿层面产生;当起伏角较大时,裂纹在锯齿面和锯齿内均有发生。可将锯齿状层面破坏分为沿锯齿面拉伸−剪切破裂、沿锯齿面拉伸−拉剪破裂和锯齿面−锯齿混合破裂3种模式,并具体分析了各模式的损伤演化。随起伏角增大,锯齿状层面的剪切强度先减小后增大,在起伏角为30º时达到最小值;随法向拉应力的增大,剪切强度近似线性减小,可采用Mohr-Coulomb准则进行描述,其摩擦角和黏聚力随起伏角的增加而减小。剪切强度、摩擦角和黏聚力随起伏角的变化规律主要受破裂模式的控制。随着层面黏结强度的增加,从锯齿面破裂逐渐转变为锯齿面−锯齿混合破裂。当层面黏结强度达到一定值以后,拉剪强度不再增加,主要受锯齿的岩石强度控制。

关键词: 岩石力学, 层面, 拉剪, 起伏角, 颗粒流模拟

Abstract: In order to study the tensile-shear behavior of rock discontinuities, the self-developed tension-shear device was used to carry out the direct shear test of the natural limestone bedding planes under normal tensile stresses, and the shear stress-displacement curves, the bedding plane fracture morphologies and strength characteristics were analyzed. The fracture surfaces have no friction crushing zone and local split under a tensile-shear stress. The shear strength decreases nonlinearly with the increase of normal tensile stress. Further, PFC simulation was used to study the influence of saw-tooth bedding plane undulation characteristics on its tensile-shear rupture and strength characteristics. As the normal tensile stress increases, the shear cracks decrease and the tensile cracks increase. When the undulation angle is small, cracks are generated along the saw-tooth bedding planes; when the undulation angle is large, cracks are generated along the saw-tooth bedding planes and saw-tooth. The saw-tooth bedding plane failure can be divided into three modes: tensile and shear ruptures along the saw-tooth planes, tensile and tensile-shear ruptures along the saw-tooth planes, and mixed saw-tooth plane and saw-tooth ruptures. And the damage evolution of each failure mode was analyzed. The shear strength of the saw-tooth bedding planes decreases first and then increases with the increase of the undulation angle, and the minimum is at 30º. It decreases almost linearly with the increase of the normal tensile stress, which can be described by the Mohr-Coulomb criterion. The friction angle and cohesive force decrease with the increase of the undulation angle. The variation of shear strength, friction angle and cohesion force with undulation angle is mainly controlled by the failure mode. With increasing levels of adhesive strength of bedding plane, the saw-tooth plane rupture is gradually converted into a mixed saw-tooth plane and saw-tooth ruptures. When the adhesive strength reaches a certain level, tensile-shear strength no longer increases, mainly controlled by the strength of the saw-tooth rock.

Key words: rock mechanics, bedding plane, tensile-shear, undulation angle, particle flow simulation

中图分类号: 

  • TU452
[1] 刘学伟, 刘泉声, 汪志强, 刘滨, 康永水, 王传兵, . 基于格栅拱架的软岩巷道分步联合控制技术研究[J]. 岩土力学, 2022, 43(S1): 469-478.
[2] 胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, . 离散裂隙网络对岩石力学性质和声发射特性 影响的颗粒流分析[J]. 岩土力学, 2022, 43(S1): 542-552.
[3] 程建龙, 邹清友, 杨圣奇, 李晓昭, 梁泉, 曲磊, 梅炎, . 水力切缝上方TBM滚刀贯入破坏机制模拟研究[J]. 岩土力学, 2022, 43(8): 2317-2326.
[4] 王刚, 宋磊博, 刘夕奇, 包春燕, 吝曼卿, 刘广建, . 非贯通节理花岗岩剪切断裂力学特性及 声发射特征研究[J]. 岩土力学, 2022, 43(6): 1533-1545.
[5] 唐旭海, 许婧璟, 张怡恒, 何琦, 王正直, 张国平, 刘泉声, . 基于微观岩石力学试验和NWA13618陨石的 小行星岩石力学参数分析[J]. 岩土力学, 2022, 43(5): 1157-1163.
[6] 姜玥, 周辉, 卢景景, 高阳, . 空心圆柱砂岩真三轴试验研究[J]. 岩土力学, 2022, 43(4): 932-944.
[7] 赵宏刚, 张东明, 蒋长宝, 余北辰, . 考虑软弱夹层厚度的岩体力学响应及破坏特征研究[J]. 岩土力学, 2022, 43(4): 969-980.
[8] 程坦, 郭保华, 孙杰豪, 田世轩, 孙崇轩, 陈岩, . 非规则砂岩节理剪切变形本构关系试验研究[J]. 岩土力学, 2022, 43(1): 51-64.
[9] 黄娜, 蒋宇静, 程远方, 刘日成, . 基于3D打印技术的复杂三维粗糙裂隙网络 渗流特性试验及数值模拟研究[J]. 岩土力学, 2021, 42(6): 1659-1668.
[10] 齐飞飞, 张科, 谢建斌, . 基于DIC技术的含不同节理密度类岩石试件 破裂机制研究[J]. 岩土力学, 2021, 42(6): 1669-1680.
[11] 武东阳, 蔚立元, 苏海健, 吴疆宇, 刘日成, 周键. 单轴压缩下加锚裂隙类岩石试块裂纹扩展试验 及PFC3D模拟[J]. 岩土力学, 2021, 42(6): 1681-1692.
[12] 陈曦, 曾亚武, . 基于Grasselli模型的一个新的岩石节理三维粗糙度指标[J]. 岩土力学, 2021, 42(3): 700-712.
[13] 周超彪, 刘东, 姜清辉, . 拉剪作用下类岩石试样的力学 特性与损伤破坏机制[J]. 岩土力学, 2021, 42(12): 3335-3344.
[14] 刘享华, 张科, 李娜, 齐飞飞, 叶锦明, . 含孔双裂隙3D打印类岩石试件破裂行为定量识别[J]. 岩土力学, 2021, 42(11): 3017-3028.
[15] 张科, 齐飞飞, 陈宇龙, . 基于3D打印和DIC技术的裂隙网络模型 变形破裂特征及填充物影响效应[J]. 岩土力学, 2020, 41(8): 2555-2563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[3] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[4] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[5] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[6] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[7] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[8] 马 亢,徐 进,吴赛钢,张爱辉. 公路隧道局部塌方洞段的围岩稳定性评价[J]. , 2009, 30(10): 2955 -2960 .
[9] 黄润秋,徐德敏. 岩石(体)渗透性测试的体变量法研究[J]. , 2009, 30(10): 2961 -2964 .
[10] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .