岩土力学 ›› 2021, Vol. 42 ›› Issue (11): 3017-3028.doi: 10.16285/j.rsm.2021.0521

• 基础理论与实验研究 • 上一篇    下一篇

含孔双裂隙3D打印类岩石试件破裂行为定量识别

刘享华1,张科1, 2,李娜1,齐飞飞1,叶锦明2   

  1. 1. 昆明理工大学 建筑工程学院,云南 昆明 650500;2. 昆明理工大学 电力工程学院,云南 昆明 650500
  • 收稿日期:2021-04-09 修回日期:2021-08-24 出版日期:2021-11-11 发布日期:2021-11-12
  • 通讯作者: 张科,男,1986年生,博士,副教授,博士生导师,主要从事岩石力学与工程方面的教学与研究工作。E-mail: zhangke_csu@163.com E-mail:liuxianghua24@126.com
  • 作者简介:刘享华,男,1994年生,博士研究生,主要从事岩石力学与工程方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 41762021,No. 11902128);云南省应用基础研究计划项目(No. 2019FI012)

Quantitative identification of the failure behavior of the 3D printed rock-like specimen with one hole and two flaws

LIU Xiang-hua1, ZHANG Ke1, 2, LI Na1, QI Fei-fei1, YE Jin-ming2   

  1. 1. Faculty of Civil and Architectural Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China 2. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • Received:2021-04-09 Revised:2021-08-24 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41762021, 11902128) and the Applied Basic Research Foundation of Yunnan Province (2019FI012).

摘要: 为研究含孔双裂隙岩石的力学特性及破裂机制,采用3D砂型打印技术制作含孔双裂隙类岩石试件,结合数字图像相关方法(digital image correlation,DIC)对压缩过程中的试件进行非接触式、全场观测。计算水平应变、垂直应变和剪切应变3个分量的协方差矩阵,引入应变场有效方差量化分析和识别试件破裂行为。研究结果表明:3D砂型打印标准试件的力学性能与真实砂岩相似,且试验结果离散性低,可归结为类岩石材料。预制裂隙劣化了试件的力学性能,相比于含孔无裂隙试件,含孔双裂隙试件的抗压强度和弹性模量分别降低了8.04%~38.91%和14.44%~27.78%。结合DIC计算结果,成功识别出3种基本裂纹,即张拉裂纹(I型)、剪切裂纹(II型)和拉剪混合裂纹(I-II复合型)。含孔双裂隙试件均表现为拉剪混合破坏;孔洞和裂隙之间的贯通模式受两者之间水平距离的影响,可分为张拉贯通、转动贯通以及拉剪混合贯通。应变场有效方差能够全面、深入地反映应变数据的离散程度,初始压密和弹性阶段的应变场有效方差接近于0,裂纹萌生后表现出不同的演化规律。在此基础上,提出一种基于应变场有效方差的裂纹类型定量识别方法。有效方差的增长速率介于0.72×10–2~1.89×10–2,可识别为张拉裂纹;介于2.34×10–2~3.59×10–2,可识别为拉剪混合裂纹;介于9.63×10–2~32.40×10–2,可识别为剪切裂纹。

关键词: 岩石力学, 孔洞, 裂隙, 数字图像相关方法, 有效方差, 裂纹识别

Abstract: In order to study the mechanical properties and failure mechanisms of the rocks with groups of holes and flaws, we use the 3D sand printing technique to prepare the rock-like specimens that each contains one hole and two flaws. We use the digital image correlation (DIC) method to monitor the full field of the specimens during their compression process without any contact. By calculating the matrix of the horizontal, vertical and shear strain, we introduce the effective variance of the strain field, which can be used to quantify and identify the failure behavior of the specimens. The main results are listed as below. The mechanical properties of the standard 3D sand printed specimens are similar to those of natural sandstones, and the variations of their mechanical properties are considerably low during the experiments. Therefore, they can be grouped as a rock-like material. Due to the inclusion of the flaws, the mechanical properties of the specimens are degraded. The compressive strength and elastic modulus are reduced by 8.04%-38.91% and 14.44%-27.78%, respectively, compared with those of the specimens containing no flaw but only one hole. Based on the results of DIC, three basic types of cracks are identified successfully, that is, tensile crack (Mode I), shear crack (Mode II) and tensile and shear mixed crack (Mode I-II). The failure patterns of all the specimens with one hole and two flaws show tensile and shear mixed crack (Model I-II). The coalescence patterns between the hole and the flaws can be influenced by their horizontal distance. Those patterns can be classified into tensile coalescence, rotation coalescence and shear coalescence. The discreteness of the strain field can be quantified by the effective variance of strain field comprehensively. The effective variance of the strain field is close to zero at the initial crack closure stage and the elastic deformation stage. It grows differently after the appearance of cracks. Based on the effective variance of the strain field, we propose a quantitative method to identify the type of crack. The cracks can be identified as tensile crack, tensile and shear mixed crack, and shear crack, respectively, when the growth rate of the effective variance falls into the ranges between 0.72×10–2 and 1.89×10–2, between 2.34×10–2 and 3.59×10–2, and between 9.63×10–2 and 32.40×10–2, correspondingly.

Key words: rock mechanics, hole, flaw, digital image correlation method, effective variance, crack identification

中图分类号: 

  • TU 452
[1] 侯晓萍, 樊恒辉. 基于COMSOL Multiphysics的非饱和 裂隙土降雨入渗特性研究[J]. 岩土力学, 2022, 43(2): 563-572.
[2] 程坦, 郭保华, 孙杰豪, 田世轩, 孙崇轩, 陈岩, . 非规则砂岩节理剪切变形本构关系试验研究[J]. 岩土力学, 2022, 43(1): 51-64.
[3] 蒋水华, 欧阳苏, 冯泽文, 康青, 黄劲松, 杨志刚, . 基于结构面参数概率分布更新的 节理岩质边坡可靠性分析[J]. 岩土力学, 2021, 42(9): 2589-2599.
[4] 刘鑫, 许宏发, 范鹏贤, 耿汉生, 莫家权, 王德荣. 围压下岩石填充裂隙对应力波衰减规律的试验研究[J]. 岩土力学, 2021, 42(8): 2099-2108.
[5] 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126.
[6] 乔趁, 王宇, 宋正阳, 李长洪, 侯志强, . 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150.
[7] 崔溦, 王利新, 江志安, 王超, 王枭华, 张社荣, . 基于修正立方定律的岩体粗糙裂隙网络 注浆过程模拟研究[J]. 岩土力学, 2021, 42(8): 2250-2258.
[8] 李博, 崔逍峰, 莫洋洋, 邹良超, 伍法权, . 法向应力作用下砂岩错位裂隙变形行为研究[J]. 岩土力学, 2021, 42(7): 1850-1860.
[9] 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943.
[10] 张闯, 任松, 张平, 隆能增, . 水、孔洞及层理耦合作用下的千枚岩 巴西劈裂试验研究[J]. 岩土力学, 2021, 42(6): 1612-1624.
[11] 黄娜, 蒋宇静, 程远方, 刘日成, . 基于3D打印技术的复杂三维粗糙裂隙网络 渗流特性试验及数值模拟研究[J]. 岩土力学, 2021, 42(6): 1659-1668.
[12] 齐飞飞, 张科, 谢建斌, . 基于DIC技术的含不同节理密度类岩石试件 破裂机制研究[J]. 岩土力学, 2021, 42(6): 1669-1680.
[13] 武东阳, 蔚立元, 苏海健, 吴疆宇, 刘日成, 周键. 单轴压缩下加锚裂隙类岩石试块裂纹扩展试验 及PFC3D模拟[J]. 岩土力学, 2021, 42(6): 1681-1692.
[14] 汪时机, 骆赵刚, 李贤, 文桃. 考虑局部含水率效应的浅层土体开裂 过程与力学机制分析[J]. 岩土力学, 2021, 42(5): 1395-1403.
[15] 陈曦, 曾亚武, . 基于Grasselli模型的一个新的岩石节理三维粗糙度指标[J]. 岩土力学, 2021, 42(3): 700-712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李加贵,陈正汉,黄雪峰,李 佳. 原状非饱和Q3黄土的土压力原位测试和强度特性研究[J]. , 2010, 31(2): 433 -440 .
[2] 胡明鉴,汪 稔,陈中学,王志兵. 泥石流启动过程PFC数值模拟[J]. , 2010, 31(S1): 394 -397 .
[3] 张建新,刘双菊,周嘉宾. 逆作基坑开挖卸荷对工程结构的影响分析[J]. , 2010, 31(S2): 218 -223 .
[4] 白 冰,李春峰. 地铁列车振动作用下近距离平行隧道的弹塑性动力响应[J]. , 2009, 30(1): 123 -128 .
[5] 薛云亮,李庶林,林 峰,徐宏斌. 考虑损伤阀值影响的钢纤维混凝土损伤本构模型研究[J]. , 2009, 30(7): 1987 -1992 .
[6] 任 重,盛 谦. 我国岩石力学学科结构及其演变初探[J]. , 2009, 30(S1): 293 -298 .
[7] 张军辉. 不同软基处理方式下高速公路加宽工程变形特性分析[J]. , 2011, 32(4): 1216 -1222 .
[8] 王亮清,P.H.S.W. Kulatilake,唐辉明,梁 烨,吴 琼. 双临空面岩质边坡滑动与倾倒破坏的运动学分析[J]. , 2011, 32(S1): 72 -77 .
[9] 李 旭,张利民,敖国栋. 失水过程孔隙结构、孔隙比、含水率变化规律[J]. , 2011, 32(S1): 100 -105 .
[10] 邓华锋,李建林,刘 杰,朱 敏,郭 靖,鲁 涛. 考虑裂隙水压力的岩体压剪裂纹扩展规律研究[J]. , 2011, 32(S1): 297 -0302 .