岩土力学 ›› 2022, Vol. 43 ›› Issue (7): 1899-1912.doi: 10.16285/j.rsm.2021.2106

• 岩土工程研究 • 上一篇    下一篇

深圳岩溶空间发育规律统计分析

刘动1, 2,林沛元3, 4,陈贤颖3, 4,黄胜3, 4,马保松3, 4   

  1. 1. 深圳市岩土综合勘察设计有限公司,广东 深圳 518172;2. 深圳市龙岗地质勘查局,广东 深圳 518172; 3. 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519080;4. 中山大学 土木工程学院,广东 广州 510275
  • 收稿日期:2021-12-14 修回日期:2022-04-27 出版日期:2022-07-26 发布日期:2022-08-04
  • 通讯作者: 林沛元,男,1986年生,博士,研究员,主要从事地下空间工程与海洋土木工程风险评估与智慧防控研究。E-mail: linpy23@mail.sysu.edu.cn E-mail:liudong04@126.com
  • 作者简介:刘动,男,1986年生,博士,高级工程师,主要从事岩土工程勘察及设计方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No. 51979254);国家自然科学基金青年基金资助项目(No. 52008408);广东省基础与应用基础研究基金 (No. 2021A1515012088)

Statistical analysis of karst spatial distribution in Shenzhen

LIU Dong1, 2, LIN Pei-yuan3, 4, CHEN Xian-ying3, 4, HUANG Sheng3, 4, MA Bao-song3, 4   

  1. 1. Shenzhen Comprehensive Geotechnical Engineering Investigation & Design Co.Ltd, Shenzhen, Guangdong 518172, China; 2. Shenzhen Longgang Geology Bureau, Shenzhen, Guangdong 518172, China; 3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519080, China; 4. School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
  • Received:2021-12-14 Revised:2022-04-27 Online:2022-07-26 Published:2022-08-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51979254), the National Natural Science Foundation for Young Scientists of China (52008408) and the Guangdong Basic and Applied Basic Research Foundation (2021A1515012088).

摘要: 粤港澳大湾区建设是国家重大发展战略,而深圳市又是大湾区建设的核心引擎之一。深圳市岩溶地区行政区划上主要发育在龙岗区和坪山区,岩溶地质灾害给地下空间开发利用与城市安全构成极大挑战。通过收集深圳市岩溶勘察钻探数据,从地层岩性、基岩埋深与埋藏类型、地下水主要侵蚀指标、地下水埋深与年变化幅度、溶洞埋深、顶板厚度、洞高、充填情况、线溶率、见洞率、地表岩溶发育密度等方面对深圳市岩溶空间发育特征进行了统计分析。结果表明:深圳市岩溶主要为浅覆盖型,但溶洞空间特征变异性极大。从统计上讲,溶洞平均埋深约为20 m,平均洞高为2.5~4.0 m,以半充填为主,充填物主要为粉质黏土;平均线溶率约为15%,见洞率约为40%,地表岩溶发育密度超过300个/km2,综合上看,深圳场地岩溶发育等级超过90%为强发育。上述主要岩溶特征参数服从对数正态分布和Weibull分布。总体上,灰岩地层溶洞顶板厚度随着岩面埋深而呈现递减的趋势,而大理岩地层溶洞顶板厚度则与岩面埋深无关;已发育的溶洞高度与基岩面埋深、溶洞顶板厚度、地下水主要侵蚀指标及地下水埋深无关或弱正相关。研究成果为深圳市岩溶灾害风险评估提供了重要的先验信息。

关键词: 岩溶地质, 深圳市, 空间分布特征, 统计分析

Abstract: The construction of Guangdong-Hong Kong-Macao Greater Bay Area is a major national development strategy of China. Shenzhen is a core city in the Greater Bay area. The karst in Shenzhen typically is found in Longgang and Pingshan districts. It has brought great challenges and threats to the underground exploitation and ground construction safety for the city. In this paper, borehole data are first collected from karst geotechnical investigation projects in Shenzhen and from the relevant literature. Based on the data, the spatial features of the karst in Shenzhen are statistically characterized considering strata and rock type, rock stratum depth and burial type, main corrosive indices of the groundwater, depth of the karst caves, thickness of the cave ceiling, cave height, fillings, karst line ratio, karst borehole ratio, and ground karst growth density. Results showed that the karst in Shenzhen is typically buried shallowly, but largely varies as of the spatial features. Statistically, on average the karst cave is about 20 m in depth, 2.5 m to   4 m in height, and mainly half filled with silty clays. On average the karst is about 15% for line ratio, 40% for borehole ratio, and over 300 caves per km2 for the ground karst growth density. Overall, over 90% of the sites are ranked as high in karst development. It is also found that the above karst parameters follow lognormal as well as Weibull distributions. The ceiling thickness tends to be smaller as the rock depth increases for limestone stratum, whereas these two factors are statistically uncorrelated at a significance level of 0.05 for marble stratum. The cave height appears to be statistically independent or positively weakly correlated to rock depth, ceiling thickness, underground corrosive indices, and groundwater table. The findings from this paper provide valuable priori information to risk assessment on karst hazards in Shenzhen. 

Key words: karst geology, Shenzhen, spatial distribution characteristics, statistical analysis

中图分类号: 

  • P 642
[1] SHARAFUTDINOV Rafael. 三轴试验中砂土刚度的统计和回归分析及应用[J]. 岩土力学, 2022, 43(10): 2873-2886.
[2] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[3] 万志辉, 戴国亮, 高鲁超, 龚维明, . 大直径后压浆灌注桩承载力和沉降的 实用计算方法研究[J]. 岩土力学, 2020, 41(8): 2746-2755.
[4] 骆顺天, 杨凡杰, 周辉, 张传庆, 王旭宏, 吕涛, 朱勇, 卢景景, . 基于统计分析的地下厂房边墙最大收敛变形 多指标预测方法 [J]. 岩土力学, 2020, 41(10): 3415-3424.
[5] 周海娟,马 刚,袁 葳,周 伟,常晓林, . 堆石颗粒压缩破碎强度的尺寸效应[J]. , 2017, 38(8): 2425-2433.
[6] 林 军,蔡国军,刘松玉,邹海峰, . 基于孔压静力触探力学分层的土体边界识别方法研究[J]. , 2017, 38(5): 1413-1423.
[7] 李 刚,张金利,杨 庆, . 不同成因沉积土物理力学指标概率统计分析[J]. , 2017, 38(12): 3565-3572.
[8] 庄海洋,张艳书,薛栩超,徐 烨,. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. , 2016, 37(S2): 561-570.
[9] 张家发,叶加兵,陈劲松,李少龙. 碎石颗粒形状测量与评定的初步研究[J]. , 2016, 37(2): 343-349.
[10] 吴秋军,王明年,刘大刚. 基于现场位移监测数据统计分析的隧道 围岩稳定性研究 [J]. , 2012, 33(S2): 359-364.
[11] 井文君 ,杨春和 ,陈 锋. 基于事故统计分析的盐岩地下油/气储库风险评价[J]. , 2011, 32(6): 1787-1794.
[12] 尹利华,王晓谋,张留俊. 天津软土土性指标概率分布统计分析[J]. , 2010, 31(S2): 462-469.
[13] 张成平,张顶立,王梦恕,李倩倩,刘胜春. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. , 2010, 31(S1): 303-309.
[14] 黄强兵,彭建兵,闫金凯,陈立伟. 地裂缝活动对土体应力与变形影响的试验研究[J]. , 2009, 30(4): 903-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .