岩土力学 ›› 2023, Vol. 44 ›› Issue (2): 577-594.doi: 10.16285/j.rsm.2022.0365

• 岩土工程研究 • 上一篇    下一篇

基于控制区间牵引算法的地下施工变形预测

马恩临1,赖金星1,王立新2,汪珂2,雷升祥3,李储军2,邱军领1   

  1. 1. 长安大学 公路学院,陕西 西安 710064;2. 中铁第一勘察设计院集团有限公司,陕西 西安 710043;3. 中国铁建股份有限公司,北京 100855
  • 收稿日期:2022-03-25 接受日期:2022-09-25 出版日期:2023-02-10 发布日期:2023-02-17
  • 通讯作者: 赖金星,男,1973年生,博士,教授,博士生导师,主要从事黄土隧道力学与工程安全性分析方面的研究。E-mail: laijinxing@chd.edu.cn E-mail:maenlin@chd.edu.cn
  • 作者简介:马恩临,男,1995年生,博士研究生,主要从事地下工程监测值预测及风险评价方面的研究。
  • 基金资助:
    国家重点研发计划项目(No. 2018YFC0808706);长安大学博士研究生创新能力培养资助项目(No. 300203211217);陕西省重点研发计划项目(No. 2023-YBSF-511)

Deformation prediction during underground construction based on traction algorithm in control phases

MA En-lin1, LAI Jin-xing1, WANG Li-xin2, WANG Ke2, LEI Sheng-xiang3, LI Chu-jun2, QIU Jun-ling1   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. China Railway First Survey and Design Institute Group Ltd., Xi’an, Shaanxi 710043, China; 3. China Railway Construction Corporation Limited, Beijing 100855, China
  • Received:2022-03-25 Accepted:2022-09-25 Online:2023-02-10 Published:2023-02-17
  • Supported by:
    This work was supported by the National Key R&D Program of China (2018YFC0808706), the Funding Project for Innovation Ability Training of Doctoral Candidates of Chang’an University (300203211217) and the Key R&D Program of Shaanxi Province (2023-YBSF-511).

摘要: 变形是地下结构施工安全状态的重要评价指标。针对数据驱动变形预测方法中地下施工动态影响因素难以量化这一问题,提出了基于控制区间牵引算法的地下施工变形预测模型。以双向长短时记忆网络(Bi-LSTM)对变形监测时间序列进行预测,以数值模拟在关键施工阶段处的结果为牵引点。根据实测值随阶段更新牵引点,并基于注意力机制双向长短时记忆网络(Bi-LSTM-AM)以牵引点修正数据驱动模型在控制区间的预测结果,实现更准确、更智能的地下施工变形预测。设置牵引相对权重,使模型可自适应判断当前合理牵引程度,准确融合了Bi-LSTM与数值模拟的结果。通过相关历史案例与数据,验证了牵引预测模型的有效性。依托西安市西咸新区丰镐三路地下通道上跨地铁1号线自动化监测实例,采用牵引算法预测了地下结构变形。结果表明:在关键施工阶段处,牵引作用改善了数据驱动预测方法存在的滞后问题,各阶段误差平均降低了24.34%;不断优化的牵引点逐渐趋近真值,降低了数值模拟出现偏差时造成的影响。该方法可为地下施工变形预测问题提供新途径。

关键词: 地下工程, 变形预测, 时间序列, 牵引算法, Bi-LSTM, 注意力机制

Abstract: Deformation control is essential when assessing the safety state of underground structures during construction. Due to the difficulty in quantifying the dynamic influence of underground construction, a deformation prediction model based on traction algorithm in control phases are proposed. The bidirectional long short-term memory (Bi-LSTM) is adopted to predict the time series of the monitoring data. The results of crucial construction stages obtained by numerical simulation are taken as traction points and are updated along with the stages according to the existing monitoring data. By using the attention mechanism combined with the bidirectional long short-term memory (Bi-LSTM-AM), the prediction results of the data-driven models in the control phases can thereafter be modified according to the updated traction points, achieving a more accurate and intelligent prediction of deformation during underground construction. Setting the traction relative weight allows the current reasonable traction degree to be adaptively determined, thereby realizing a valid fusion of Bi-LSTM and numerical simulation. The effectiveness of the traction prediction model is verified through relevant historical cases and data. Combined with the automatic monitoring case of Xi’an Metro Line 1 affected by the upper-span underpass of Fenghao third road in Xixian New District, the advantages and shortcomings of traction prediction are discussed. The results show that the traction effects improve the delay problem of data-driven prediction at the key construction stages, and the error is decreased by 24.34% on average. The continuously optimized traction points gradually approach the true values, which reduces the impact caused by the deviation of numerical simulation. The proposed model provides a fresh perspective on the deformation prediction during underground construction.

Key words: underground engineering, deformation prediction, time series, traction algorithm, Bi-LSTM, attention mechanism

中图分类号: 

  • TU 94
[1] 李术才, 李利平, 孙子正, 刘知辉, 李梦天, 潘东东, 屠文锋, . 超长定向钻注装备关键技术分析及发展趋势[J]. 岩土力学, 2023, 44(1): 1-30.
[2] 张振坤, 张冬梅, 李江, 吴益平, . 基于多头自注意力机制的LSTM-MH-SA滑坡 位移预测模型研究[J]. 岩土力学, 2022, 43(S2): 477-486.
[3] 仉文岗, 顾鑫, 刘汉龙, 张青, 王林, 王鲁琦, . 基于贝叶斯更新的非饱和土坡参数概率 反演及变形预测[J]. 岩土力学, 2022, 43(4): 1112-1122.
[4] 郭健, 陈健, 胡杨. 基于小波智能模型的地铁车站基坑变形 时序预测分析[J]. 岩土力学, 2020, 41(S1): 299-304.
[5] 张晋勋, 亓轶, 杨昊, 宋永威. 北京砂卵石地层盆形冻结的温度场扩展规律研究[J]. 岩土力学, 2020, 41(8): 2796-2804.
[6] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[7] 胡帅伟, 陈士海, . 爆破振动下围岩支护锚杆动力响应解析解[J]. 岩土力学, 2019, 40(1): 281-287.
[8] 董志宏, 钮新强, 丁秀丽, 翁永红, 黄书岭, 裴启涛, 张 练, . 乌东德左岸地下厂房洞室群施工期 围岩变形特征及反馈分析[J]. 岩土力学, 2018, 39(S2): 326-336.
[9] 孟 蒙,陈智强,黄 达,曾 彬,陈赐金,. 基于H-P滤波法、ARIMA和VAR模型的库区滑坡位移综合预测[J]. , 2016, 37(S2): 552-560.
[10] 王志丰 ,沈水龙,谢永利,. 水平旋喷桩施工引起周围土体变形分析[J]. , 2016, 37(4): 1083-1088.
[11] 裴启涛,丁秀丽,卢 波,黄书岭,付 敬,韩晓玉. 考虑地应力分布形式的坝址区初始应力场二次反演方法[J]. , 2016, 37(10): 2961-2970.
[12] 周 超 , 殷坤龙 , 黄发明,. 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. , 2015, 36(9): 2674-2680.
[13] 王迎超 ,靖洪文 ,张 强 ,蔚立元 ,徐智敏,. 基于正态云模型的深埋地下工程岩爆烈度分级预测研究[J]. , 2015, 36(4): 1189-1194.
[14] 伍国军 ,陈卫忠 ,谭贤君 ,杨典森,. 基于拉丁超立方抽样的有限元可靠度程序开发及应用[J]. , 2015, 36(2): 550-554.
[15] 乔丽苹 ,刘 杰 ,李术才 ,王者超 ,姜彦彦 ,王子豪,. 地下工程开挖面空间效应特征研究及应用[J]. , 2014, 35(S2): 481-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .