岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 268-276.doi: 10.16285/j.rsm.2022.0405
洪义1, 2, 3,郑博文1, 3, 4,姚梦浩2, 3,王立忠1, 2,孙海泉4,许冬5, 6
HONG Yi1, 2, 3, ZHENG Bo-wen1, 3, 4, YAO Meng-hao2, 3, WANG Li-zhong1, 2, SUN Hai-quan4, XU Dong5, 6
摘要: 目前陆上及浅海海相软土的微观结构和压缩特性研究较为广泛,而深海软土的微观结构和压缩特性研究较少,但随着海洋工程向深水发展,深海软土的特性值得关注。硅藻土广泛分布于深海海底,是深海软土的一种,其具有多样性,不遵循软土经典规律的特点,目前国内外对原位未扰动样品研究很少。针对西太平洋(水深为4 423~4 674 m)原位硅藻土样,通过电镜扫描(scanning electron microscope,简称SEM)、压汞试验(mercury intrusion porosimety,简称MIP)、常规一维压缩固结试验及多级荷载下(单级加载维持7 d)一维压缩固结试验,开展深海硅藻土微观结构、压缩特性及次固结特性的试验研究。试验结果表明:深海硅藻土的压缩指数分布在1.70~1.95之间,较其他陆上及浅海海相软土大0.6~1.2左右;且在固结完成后的蠕变阶段,硅藻土仍长时间发生体积变形,且并未出现变形收敛趋于稳定的态势,可能是由于硅藻颗粒外壳的持续破碎所导致,这一假设已被加载阶段的SEM和MIP试验观测结果所证实。
中图分类号:
[1] | 王朝辉, 问鹏辉, 宋亮, 牛亮亮, 奚鹤, . 基于颗粒破碎特性的盐岩集料基层级配组成设计研究[J]. 岩土力学, 2024, 45(2): 340-352. |
[2] | 张季如, 陈敬鑫, 王 磊, 彭伟珂. 三轴剪切过程中排水条件对钙质砂颗粒破碎、变形和强度特性的影响[J]. 岩土力学, 2024, 45(2): 375-384. |
[3] | 杨阳, 王乐, 马建华, 童晨曦, 张春会, 王智超, 田英辉, . 考虑颗粒破碎影响的钙质砂中海底管道贯入机制研究[J]. 岩土力学, 2024, 45(2): 623-632. |
[4] | 张达锦, 肖桂元, 武岳, 徐光黎, 刘伟, . 重金属Cu2+驱动下红黏土土体压缩变形机制[J]. 岩土力学, 2023, 44(S1): 127-133. |
[5] | 张艳美, 张建, 袁彦昊, 孙文秀, . 纳米SiO2和石灰固化滨海石油污染土试验研究[J]. 岩土力学, 2023, 44(S1): 259-267. |
[6] | 程光, 范文, 于宁宇, 姜程程, 陶宜权, . 土−石混合体土−水特性和微观结构的相关性研究[J]. 岩土力学, 2023, 44(S1): 365-374. |
[7] | 瞿茹, 朱长歧, 刘海峰, 王天民, 马成昊, 王星, . 珊瑚砂界限干密度确定方法的比较研究[J]. 岩土力学, 2023, 44(S1): 461-475. |
[8] | 张俊然, 宋陈雨, 姜彤, 王俪锦, 赵金玓, 熊潭清. 非饱和黄土高吸力下的水力力学特性及微观结构分析[J]. 岩土力学, 2023, 44(8): 2229-2237. |
[9] | 李新明, 张浩扬, 武迪, 郭砚睿, 任克彬, 谈云志, . 石灰−偏高岭土改良遗址土强度劣化特性的冻融循环效应[J]. 岩土力学, 2023, 44(6): 1593-1603. |
[10] | 尹福顺, 李飒, 刘鑫, . 钙质粗粒料颗粒强度和压缩特性的试验研究[J]. 岩土力学, 2023, 44(4): 1120-1129. |
[11] | 郅彬, 王小婵, 刘恩龙, . 颗粒形状对粒状材料破碎演化规律及强度准则影响[J]. 岩土力学, 2023, 44(3): 649-662. |
[12] | 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460. |
[13] | 徐倚晴, 张先伟, 王港, 刘新宇, 高浩东, . 硅藻土的微观结构特征及其对物理性质的影响[J]. 岩土力学, 2023, 44(12): 3501-3511. |
[14] | 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66. |
[15] | 高敏, 何绍衡, 夏唐代, 丁智, 王新刚, 张琼方, . 复杂应力路径下钙质砂颗粒破碎及抗剪强度特性[J]. 岩土力学, 2022, 43(S1): 321-330. |
|