岩土力学 ›› 2023, Vol. 44 ›› Issue (4): 1165-1178.doi: 10.16285/j.rsm.2022.0696

• 岩土工程研究 • 上一篇    下一篇

考虑盾构铰接作用的小半径曲线隧道开挖诱发地层沉降分析

张治国1, 2, 3, 4,陈杰1,朱正国2,魏纲4,吴钟腾3,陈仲侃1   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093;2. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043;3. 自然资源部丘陵山地地质灾害防治重点实验室 福建省地质灾害重点实验室,福建 福州 350002; 4. 浙大城市学院 土木工程系,浙江 杭州 310015
  • 收稿日期:2022-05-11 接受日期:2022-07-19 出版日期:2023-04-18 发布日期:2023-04-29
  • 作者简介:张治国,男,1978年生,博士(后),教授,博士生导师,主要从事地下工程施工环境影响等方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No.41977247,No.42177145);自然资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)课题(No.FJKLGH2020K004);省部共建交通工程结构力学行为与系统安全国家重点实验室课题(No.KF2022-07)。

Analysis of ground settlement induced by small radius curve tunnel excavation considering shield articulation effect

ZHANG Zhi-guo1, 2, 3, 4, CHEN Jie1, ZHU Zheng-guo2, WEI Gang4, WU Zhong-teng3, CHEN Zhong-kan1   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Key Laboratory of Geohazard of Fujian Province, Key Laboratory of Geohazard Prevention of Hilly Mountains of Ministry of Natural Resources of China, Fuzhou, Fujian 350002, China; 4. Department of Civil Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
  • Received:2022-05-11 Accepted:2022-07-19 Online:2023-04-18 Published:2023-04-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41977247, 42177145), the Project of Key Laboratory of Geohazard Prevention of Hilly Mountains of Ministry of Natural Resources of China (Key Laboratory of Geohazard Prevention of Fujian Province) (FJKLGH2020K004) and the Project of the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (KF2022-07).

摘要: 目前针对小半径曲线隧道开挖诱发地层沉降的理论研究均将盾构机视为一个连续的整体,未考虑盾构机铰接装置带来的影响,由此不能正确评估小曲率盾构开挖路径变化带来的超挖效应等。首先,根据盾构机铰接位置以及盾构机与小曲率隧道开挖路径的几何位置关系,得到了小曲率隧道开挖过程中不同盾构铰接位置超挖量及盾构铰接角计算公式;其次,基于镜像法及Mindlin解,求解了铰接盾构施工时因超挖地层损失、盾尾地层损失、开挖面不均匀推力、盾壳不均匀摩擦力及盾尾处注浆压力等共同影响的地层沉降;最后,采用工程监测数据与理论解进行对比验证,得到较好的一致性。此外,针对隧道转弯半径、前盾长度、盾构铰接角及超挖量等进行了参数分析。分析结果表明:不考虑盾构铰接装置的影响将过高估计地层损失而导致地层沉降预测值偏大。随着转弯半径的减小,前盾长度、盾构铰接角及超挖量的增加,地层沉降增大,但其值变化均对开挖面前方沉降影响较小,对开挖面后方沉降影响较大。在开挖面后方,随着与开挖面距离的增大,当转弯半径取值较小,前盾长度、盾构铰接角及超挖量取值较大时,纵向地表沉降呈先增大后减小趋势。

关键词: 盾构机铰接, 小半径曲线隧道, 铰接角, 超挖量, 地层沉降, Mindlin解

Abstract: Current theoretical studies of ground settlement induced by small radius curved tunnelling mostly consider the shield as a continuous whole and do not consider the effect of shield articulation. Therefore, the over-excavation gap caused by the change of excavation path of small curvature shield cannot be correctly evaluated. Firstly, based on the shield articulation position and the geometric position relationship between the shield and the small curvature tunnel excavation path, the calculation formulas were obtained for the over-excavation gap and articulated angle at different articulation positions of the shield machine during the excavation of the small curvature tunnel. Then, the mirror image method and Mindlin solution were used to solve the ground settlement caused by the combined effect of over-excavation ground loss, shield tail ground loss, excavation face uneven thrust, shield shell uneven friction and slurry pressure at the shield tail during articulated shield. Finally, engineering monitoring data were used to compare and verify with the theoretical solution of this paper, and good agreement was obtained. In addition, parametric analysis was carried out for the tunnel turning radius, front shield length, shield articulation angle and over-excavation gap. The analysis results show that ignoring the effect of shield articulation will overestimate the ground loss and result in large predictions of ground settlement. As the turning radius decreases, length of the front shield, shield articulation angle and over-excavation gap increases, the ground settlement increases, but the change of its value has a small effect on the settlement in front of the excavation face and a larger effect on the settlement behind the excavation face. Behind the excavation face, the longitudinal surface settlement tends to increase and then decrease as the distance from the excavation face increases, when the turning radius is taken to be small and the front shield length, shield articulation angle and over-excavation gap are taken to be large.

Key words: shield articulation, small radius curve tunnel, articulated angle, over-excavated gap, ground settlement, Mindlin solution

中图分类号: 

  • TU457
[1] 张玉, 梁昊, 林亮, 周游, 赵青松, . 不同沉降方式下埋地管道力学响应试验研究[J]. 岩土力学, 2023, 44(6): 1645-1656.
[2] 张志伟, 李忠超, 梁荣柱, 于东东, 梁东睿, 王理想, 吴文兵. 软土地层矩形顶管掘进引起地表隆沉变形分析[J]. 岩土力学, 2022, 43(S1): 419-430.
[3] 赵留园, 单治钢, 汪明元, . 地震作用下南黄海海上风电场水 平场地液化特性分析[J]. 岩土力学, 2022, 43(1): 169-180.
[4] 魏 纲,姜 鑫,张鑫海,金 睿,. 地面出入式盾构法隧道施工引起的土体垂直变形[J]. , 2018, 39(3): 993-1001.
[5] 周锦强,王树英,阳军生,傅金阳,. 基于Mindlin解分析隧道开挖对近邻桩基的影响[J]. , 2017, 38(4): 1075-1081.
[6] 周平槐1, 2,杨学林1. 考虑开挖卸荷影响的桩侧摩阻力等效计算方法[J]. , 2016, 37(10): 2953-2960.
[7] 张琼方 ,林存刚 ,丁 智 ,夏唐代 ,单华峰 , . 盾构近距离下穿引起已建地铁隧道纵向变形理论研究[J]. , 2015, 36(S1): 568-572.
[8] 赵智涛 ,刘 军 ,王 霆 ,刘继尧,. 地铁暗挖施工引起的管线与地层沉降关系研究[J]. , 2015, 36(4): 1159-1166.
[9] 夏元友 ,陈春舒 ,BAKRI Mudthir ,王智德 ,周 雄,. 浅埋隧道开挖引起的土体水平位移分析[J]. , 2015, 36(2): 354-360.
[10] 杨建民 ,李 嘉,. 基坑底分层回弹量的实用计算方法[J]. , 2014, 35(5): 1413-1420.
[11] 安建永 ,项彦勇 ,贾永州,. 既有桩基荷载对邻近浅埋隧道开挖效应及支护内力影响的研究[J]. , 2014, 35(4): 926-932.
[12] 林存刚 吴世明 张忠苗 刘俊伟 李宗梁 . 盾构掘进速度及非正常停机对地面沉降的影响[J]. , 2012, 33(8): 2472-2482.
[13] 魏焕卫,宋丰波,杨 敏,孙剑平. 基于明德林解的土钉内力计算方法[J]. , 2011, 32(S1): 6-14.
[14] 艾智勇,成志勇. 层状地基中轴向受荷单桩的边界元法分析[J]. , 2009, 30(5): 1522-1526.
[15] 陈福全 ,黄伟达 . 基于Poulos弹性理论的被动桩改进算法[J]. , 2008, 29(4): 905-910.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王光勇,顾金才,陈安敏,徐景茂,张向阳. 全长粘结式锚杆加固洞室抗爆性能试验研究[J]. , 2010, 31(1): 107 -112 .
[2] 刘维正,石名磊. 长江漫滩相软土结构性特征及其工程效应分析[J]. , 2010, 31(2): 427 -432 .
[3] 杨磊,贺为民,周杨,张清明. 深层搅拌桩复合地基的优化设计[J]. , 2010, 31(8): 2575 -2579 .
[4] 迟福东,王进廷,金 峰,汪 强. 土-结构-流体动力相互作用的实时耦联动力试验[J]. , 2010, 31(12): 3765 -3770 .
[5] 艾智勇,成志勇. 层状地基中轴向受荷单桩的边界元法分析[J]. , 2009, 30(5): 1522 -1526 .
[6] 吴振君,葛修润. 求解边坡矢量和安全系数的条分法[J]. , 2009, 30(8): 2337 -2342 .
[7] 徐海清 ,傅志峰 ,梁立刚 ,王国波 ,陈 梁. 列车荷载作用下紧邻垂直多孔隧道环境振动分析[J]. , 2011, 32(6): 1869 -1873 .
[8] 陈金刚 ,徐 平 ,张  ,李亚帮. 膨胀性充填裂隙峰前本构关系实验研究[J]. , 2011, 32(10): 2998 -3003 .
[9] 罗玉龙,吴 强,詹美礼,盛金昌. 考虑应力状态的悬挂式防渗墙-砂砾石地基管涌临界坡降试验研究[J]. , 2012, 33(S1): 73 -78 .
[10] 张智超 ,陈育民 ,刘汉龙 . 微差爆破模拟天然地震的数值分析与效果评价[J]. , 2013, 34(1): 265 -274 .