岩土力学 ›› 2022, Vol. 43 ›› Issue (1): 169-180.doi: 10.16285/j.rsm.2021.0336

• 岩土工程研究 • 上一篇    下一篇

地震作用下南黄海海上风电场水 平场地液化特性分析

赵留园1, 2, 3, 4,单治钢1, 2, 3,汪明元1, 2, 3   

  1. 1. 中国电建集团 华东勘测设计研究院有限公司,浙江 杭州 311122;2. 浙江华东建设工程有限公司,浙江 杭州 310014; 3. 海洋岩土工程勘察技术与装备浙江省工程研究中心,浙江 杭州 310014;4. 东南大学 土木工程学院,江苏 南京 211189
  • 收稿日期:2021-03-09 修回日期:2021-09-26 出版日期:2022-01-10 发布日期:2022-01-07
  • 作者简介:赵留园,男,1990年生,博士,博士后,主要从事海洋岩土工程方面的研究工作。
  • 基金资助:
    中国博士后科学基金(No. 2020M681465);中国电建集团华东勘测设计研究院科技项目(No. KY2021-KC-02-03)

Analysis of liquefaction characteristics of horizontal site of offshore wind farm under earthquake in the South Yellow Sea

ZHAO Liu-yuan1, 2, 3, 4, SHAN Zhi-gang1, 2, 3, WANG Ming-yuan1, 2, 3   

  1. 1. PowerChina Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 311122, China; 2. Zhejiang Huadong Construction Engineering Corporation Limited, Hangzhou, Zhejiang 310004, China; 3. Zhejiang Engineering Research Center of Marine Geotechnical Investigation Technology and Equipment, Hangzhou, Zhejiang 310004, China; 4. College of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2021-03-09 Revised:2021-09-26 Online:2022-01-10 Published:2022-01-07
  • Supported by:
    This work was supported by the China Post-Doctoral Science Foundation (2020M681465) and the Science and Technology Project of PowerChina Huadong Engineering Corporation (KY2021-KC-02-03).

摘要: 江苏近海属南黄海海域,是我国海上风电场最集中的地区,目前约占全国总装机容量的70%~75%,该区覆盖层厚度大,桩长深度范围(一般40~60 m)多为粉砂、粉土、粉质黏土地层,尤其是泥面以下20 m深度为易液化粉砂?粉土地层。而南黄海地区亦是我国的地震多发区,因此,研究了该区海上风电场水平场地的地震液化特性。首先基于南黄海某海上风电场50个机位的钻探资料统计特征建立了地层概化模型;随后通过动三轴试验和共振柱试验标定了土体动力分析参数;然后反演了3条地震波(EL-Centro波、Northridge波、Kobe波),将地表附近地震动峰值加速度PGA分别调整为0.05g、0.10g、0.20g、0.40g并进行场地液化分析,重点分析了地震作用下地层的超孔压比、总沉降、分层沉降等特性。研究发现,该区地层为可液化地层。当PGA=0.05g时,各层监测点的超孔压比均小于1.0,地层总沉降为1 cm左右;当PGA为0.10g和0.20g时,仅表层(12 m内)地层完全液化,地层总沉降分别为10 cm和17 cm;PGA=0.40g输入时,泥面下20 m地层均完全液化,地层总沉降为30 cm左右。不同地震作用下,表层土体沉降占比最大,当PGA为0.10g及0.20g时,表层土体沉降约占总沉降的95%以上。因此,该区海上风机桩基础设计应考虑地震作用下场地的上述液化特性。

关键词: 海上风机, 南黄海, 地震作用, 液化分析, 地层沉降

Abstract: Jiangsu offshore belongs to the South Yellow Sea, which is the most concentrated area of offshore wind farms in China. At present, it accounts for about 70%?75% of the total installed capacity of China. The overburden layer thickness in this area is very large, soils along the pile length depth (generally 40?60 m) are mainly silty sand, silt and silty clay, especially the easily liquefied silty sand silt layer at the depth of 20 m below the mud surface. The South Yellow Sea is also an earthquake activity area in China. Therefore, the seismic liquefaction characteristics of the horizontal site of offshore wind farm in this area are studied. Firstly, based on the statistical characteristics of drilling data of 50 sites in an offshore wind farm in the South Yellow Sea, the generalized formation model is established. The soil dynamic parameters are calibrated based on dynamic triaxial test and resonance column test, and three ground motions are inversed (EL-Centro, Northridge and Kobe), and the peak ground acceleration (PGA) near the surface is adjusted to 0.05g, 0.10g, 0.20g and 0.40g respectively, and the site liquefaction is researched. The characteristics of excess pore pressure ratio, total settlement and layered settlement under earthquakes are analyzed. It is found that the strata in this area are liquefiable soils, the excess pore pressure ratio of each layer is less than 1.0 when input PGA is 0.05g, and the total settlement is about 1 cm. When input PGA is 0.10g and 0.20g, only the surface layer (within 12 m) is completely liquefied, and the total settlement is 10 and 17 cm respectively. When input PGA is 0.40g, the 20 m strata below the mud surface are completely liquefied, and the total settlement is about 30 cm. Under different earthquakes, the settlement of surface soil (12 m) accounts for the largest proportion (more than 95% when PGA is 0.10g and 0.20g). Therefore, the liquefaction characteristics of offshore wind farm under earthquakes should be considered for turbine pile foundation.

Key words: offshore wind turbine, South Yellow Sea, earthquake, liquefaction analysis, ground settlement

中图分类号: 

  • TU 435
[1] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[2] 刘新荣, 邓志云, 刘永权, 刘树林, 路雨明, . 地震作用下水平层状岩质边坡累积损伤与 破坏模式研究[J]. 岩土力学, 2019, 40(7): 2507-2516.
[3] 吴红刚, 武志信, 谢显龙, 牌立芳, . 土质边坡微型桩组合结构大型振动台试验研究[J]. 岩土力学, 2019, 40(10): 3844-3854.
[4] 严敏嘉,夏元友,刘婷婷. 地震作用下预应力锚索加固顺层岩坡极限分析[J]. , 2018, 39(7): 2691-2698.
[5] 汪班桥,李 楠,门玉明,张妙芝. 滑坡防治格构梁锚固系统振动台模型试验[J]. , 2018, 39(3): 782-788.
[6] 龚文惠,陈训龙,邱金伟,王 佳,钟旭晗. 基于滑移线场理论的地震作用下土质边坡稳定性分析[J]. , 2017, 38(6): 1733-1738.
[7] 黄 明,付俊杰,陈福全,江 松. 桩端荷载与地震耦合作用下溶洞顶板的破坏特征及安全厚度计算[J]. , 2017, 38(11): 3154-3162.
[8] 张治国,徐晓洋,赵其华,. 水平地震力作用下浅埋偏压隧道围岩压力的简化理论分析[J]. , 2016, 37(S2): 16-24.
[9] 俞 剑 ,黄茂松 ,张陈蓉 , . 黏土中两种不同直径单桩水平循环加载模型试验与分析[J]. , 2016, 37(4): 973-980.
[10] 赵智涛 ,刘 军 ,王 霆 ,刘继尧,. 地铁暗挖施工引起的管线与地层沉降关系研究[J]. , 2015, 36(4): 1159-1166.
[11] 夏元友 ,陈春舒 ,BAKRI Mudthir ,王智德 ,周 雄,. 浅埋隧道开挖引起的土体水平位移分析[J]. , 2015, 36(2): 354-360.
[12] 刘金龙 ,陈陆望 ,王吉利 ,汪东林,. 海上风机分段斜壁桶形基础的水平承载力计算方法[J]. , 2015, 36(10): 2750-2758.
[13] 周建烽 ,王均星 ,陈 炜 ,罗贝尔,. 线性与非线性强度的土石坝坝坡稳定分析下限法[J]. , 2015, 36(1): 233-239.
[14] 安建永 ,项彦勇 ,贾永州,. 既有桩基荷载对邻近浅埋隧道开挖效应及支护内力影响的研究[J]. , 2014, 35(4): 926-932.
[15] 言志信 ,张刘平 ,江 平 ,段 建 ,任志华 , . 锚固上覆红黏土岩体边坡的地震动力响应[J]. , 2014, 35(3): 753-758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .