岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 634-644.doi: 10.16285/j.rsm.2022.0927

• 数值分析 • 上一篇    下一篇

基于剪切波速的液化可能性等级评估表法

杨洋1,孙锐2, 3   

  1. 1. 东北林业大学 土木与交通学院,黑龙江 哈尔滨 150040; 2. 中国地震局工程力学研究所 地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080; 3. 地震灾害防治应急管理部重点实验室,黑龙江 哈尔滨 150080
  • 收稿日期:2022-06-18 接受日期:2022-08-12 出版日期:2023-11-16 发布日期:2023-11-21
  • 通讯作者: 孙锐,女,1972年生,博士,研究员,主要从事岩土地震工程研究。E-mail: iemsr@163.com E-mail:y53739623@126.com
  • 作者简介:杨洋,女,1989年生,博士,讲师,主要从事岩土地震工程研究。
  • 基金资助:
    黑龙江省自然科学基金(No. LH2020E019)。

Liquefaction probability criteria table based on shear wave velocity

YANG Yang1, SUN Rui2, 3   

  1. 1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China; 2. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, Heilongjiang 150080, China; 3. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin, Heilongjiang 150080, China
  • Received:2022-06-18 Accepted:2022-08-12 Online:2023-11-16 Published:2023-11-21
  • Supported by:
    This work was supported by the Natural Science Foundation of Heilongjiang Province (LH2020E019).

摘要: 目前国内外提出的液化评估方法以公式形式为主,其中的概率评估公式结果保守且普遍形式复杂、计算过程繁复,而大面积、多数据点的液化小区划更需要评估客观且形式简单的方法。为此,提出了基于剪切波速的优化Logistic液化概率公式和对应的液化可能性等级评估表法。根据国内外公开的剪切波速液化现场调查资料,计算得出了样本液化概率作为液化可能性分级依据,并通过决策树方法构建了3种精度的液化可能性等级表。将Kayen等的数据集作为回判数据集,衡量优化后公式及等级评估表的合理性。结果表明:优化后的概率公式误判点集中在液化临界线附近,误判影响程度小于Kayen液化概率公式;3种精度下的等级评估表均能正确分离出70%以上的场地,且客观地兼顾了液化场地与非液化场地的整体评估,简化了液化可能性评估过程,提高了剪切波速液化概率评估方法的适用性,实现了无需计算即可评估液化可能性的目的,可为开展以剪切波速为数据来源的液化小区划提供技术支持。

关键词: 液化概率等级, 决策树, 液化因素重要性排序, 剪切波速

Abstract: The existing methods are mainly expressed in equation form for evaluating the soil liquefaction, among which the equation of liquefaction probability evaluation method is particularly complicated and conservative. However, for the liquefaction microzoning of large-area and multi-points, objective and simple methods are needed. Therefor an optimized Logistic liquefaction probability equation and the corresponding tabular liquefaction probability evaluation method were developed. According to the published results of shear wave velocity liquefaction field in-site tests, the liquefaction probabilities of samples were calculated as the basis for grading the liquefaction possibility, and three precision liquefaction probability criteria tables were constructed by decision tree method. Then the data set constructed by Kayen et al. was used as the judgment data set. The differences between the optimized equation and Kayen’s liquefaction probability equation were compared to meet the purpose of measuring the reasonableness of the optimized equation and criteria tables. The results show that the influence of misjudgment by the optimized equation on actual engineering is less than Kayen’s equation. All the three criteria tables can properly isolate more than 70% of the sites, and the evaluation of liquefied site and non-liquefied site are both well considered. The criteria tables simplify the evaluation process of liquefaction probability, improve the applicability of shear wave velocity liquefaction probability evaluation method, and realize the purpose of evaluating liquefaction probability without calculation. The tabular method will provide support for liquefaction microzoning based on shear wave velocity.

Key words: liquefaction probability grades, decision tree, rank of importance of liquefaction factors, shear wave velocity

中图分类号: 

  • TU 435
[1] 张锋, 唐康为, 尹思琪, 冯德成, 陈志国, . 冻融粉质黏土的剪切波速与动态回弹模量及其转换关系[J]. 岩土力学, 2023, 44(S1): 221-233.
[2] 陈国兴, 丁杰发, 方怡, 彭艳菊, 李小军, . 场地类别分类方案研究[J]. 岩土力学, 2020, 41(11): 3509-3522.
[3] 杨志勇, 王勇, 孔令伟, 桂彬, 陈楷文, . 基于剪切波速的海底含气沉积物卸荷扰动 与样品质量评价方法[J]. 岩土力学, 2020, 41(11): 3687-3694.
[4] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[5] 陈卓识, 袁晓铭, 孙锐, 王克. 土层剪切波速不确定性对场地刚性判断的影响[J]. 岩土力学, 2019, 40(7): 2748-2754.
[6] 杨洋, 孙锐, 陈卓识, 袁晓铭. 基于土层常规参数的剪切波速液化概率计算公式[J]. 岩土力学, 2019, 40(7): 2755-2764.
[7] 朱雨萌, 吴 琪, 陈国兴, . 基于颗粒接触状态理论的砂-粉混合料 剪切波速试验[J]. 岩土力学, 2019, 40(4): 1457-1464.
[8] 孔梦云 ,陈国兴 ,李小军 ,常向东 ,周国良,. 以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J]. , 2015, 36(5): 1239-1252.
[9] 何先龙 ,赵立珍 ,佘天莉,. 基于能量变化率法自动拾取场地剪切波速[J]. , 2015, 36(3): 847-853.
[10] 丁伯阳,张 勇. 杭州第四系软土动力特性试验与土结构性影响的探讨[J]. , 2012, 33(2): 336-342.
[11] 井彦林,仵彦卿,林杜军,胡志平,李晓光,张志权. 黄土的湿陷性与击实试验指标关系研究[J]. , 2011, 32(2): 393-0397.
[12] 何先龙,赵立珍. 基于多重互相关函数分析剪切波速[J]. , 2010, 31(8): 2541-2545.
[13] 蔡国军,刘松玉,童立元,杜广印. 基于SCPTU的软土最大剪切模量测试分析研究[J]. , 2008, 29(9): 2556-2560.
[14] 董连成 ,陶夏新 ,师黎静 ,李广影 . 利用地脉动台阵记录反演场地浅层Vs结构[J]. , 2008, 29(2): 553-556.
[15] 程国勇 ,王建华 ,张献民 . 饱和砂土的剪切波速与其抗液化强度关系研究[J]. , 2007, 28(4): 689-693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 况雨春,伍开松,杨迎新,马德坤. 三牙轮钻头破岩过程计算机仿真模型[J]. , 2009, 30(S1): 235 -238 .
[2] 江 权 ,冯夏庭 ,周 辉 ,赵 阳 ,徐鼎平 ,黄 可 ,江亚丽. 层间错动带的强度参数取值探讨[J]. , 2011, 32(11): 3379 -3386 .
[3] 张敏静 ,罗 强 ,詹学启 ,张 良 . 高速铁路穿透型CFG桩复合地基沉降计算修正系数分析[J]. , 2013, 34(2): 519 -525 .
[4] 付晓东,盛 谦,张勇慧. 水电站地下洞室群分步开挖的非连续变形分析[J]. , 2013, 34(2): 568 -574 .
[5] 李长冬 ,唐辉明 ,胡 斌 ,李东明 ,倪 俊 . 小波分析和RBF神经网络在地基沉降预测中的应用研究[J]. , 2008, 29(7): 1917 -1922 .
[6] 刘 君,刘福海,孔宪京. 考虑破碎的堆石料颗粒流数值模拟[J]. , 2008, 29(S1): 107 -112 .
[7] 王传文,梅国雄,宋林辉,宰金珉. 广义荷载传递函数及其应用[J]. , 2007, 28(6): 1217 -1220 .
[8] 王 军,高玉峰. 加荷比对结构性软土沉降特性的影响[J]. , 2007, 28(12): 2614 -2618 .
[9] 陈建斌 ,周立运,. 粉煤灰坝动力特性试验研究[J]. , 2005, 26(3): 437 -440 .
[10] 庄艳峰,王 钊,. 电渗的电荷累积理论[J]. , 2005, 26(4): 629 -632 .