岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 221-233.doi: 10.16285/j.rsm.2022.1848
张锋1, 2,唐康为1,尹思琪1,冯德成1,陈志国2
ZHANG
Feng1, 2, TANG Kang-wei1,
YIN Si-qi1, FENG De-cheng1, CHEN Zhi-guo2
摘要: 动态回弹模量作为评定路基性能及进行路面设计的重要参数,受土体自身物理力学状态及外部环境的显著影响而复杂多变,亟需一种高效简便的针对性监测方法。以压实粉质黏土为研究对象,开展了不同含水率、压实度和冻融循环次数下粉质黏土动态回弹模量和剪切波速试验,获得了冻融黏土的动态回弹模量、剪切波速及两者之间的转换关系。结果表明:土体动态回弹模量和剪切波速均与其物理状态紧密相关,二者都随含水率和冻融循环的增加而急剧下降,随压实度的增加而有所提升;土体的动态回弹模量还受到应力状况的影响,随围压增大而增大,随循环偏应力增大而减小,应结合实际受力状况选取相应动态回弹模量代表值反映路基的性能;采用三参数复合模型回归确定了冻融粉质黏土动态回弹模量预估模型,并建立了冻融粉质黏土剪切波速预估模型;据此构建了冻融粉质黏土动态回弹模量与剪切波速的转换关系,为实现基于剪切波速确定路基土动态回弹模量提供了理论支持。
中图分类号:
[1] | 王宽君, 沈侃敏, 汪明元, 王洪羽, 国振, . 基于孔压静力触探的杭州湾海域软黏土强度解译参数研究[J]. 岩土力学, 2023, 44(S1): 521-532. |
[2] | 杨洋, 孙锐, . 基于剪切波速的液化可能性等级评估表法[J]. 岩土力学, 2023, 44(S1): 634-644. |
[3] | 张建新, 马昌虎, 郎瑞卿, 孙立强, 杨爱武, 李迪, . 带围压冻融循环下滨海重塑软土力学特性试验研究[J]. 岩土力学, 2023, 44(7): 1863-1874. |
[4] | 李新明, 张浩扬, 武迪, 郭砚睿, 任克彬, 谈云志, . 石灰−偏高岭土改良遗址土强度劣化特性的冻融循环效应[J]. 岩土力学, 2023, 44(6): 1593-1603. |
[5] | 张凌凯, 崔子晏, . 干湿−冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44(3): 728-740. |
[6] | 宋勇军, 孙银伟, 李晨婧, 杨慧敏, 张磊涛, 谢丽君, . 基于离散元法模拟的冻融砂岩细观破裂演化特征研究[J]. 岩土力学, 2023, 44(12): 3602-3616. |
[7] | 魏丽, 柴寿喜, 刘著, 王沛, 李芳, . 以扫描电镜与核磁共振指标评价冻融纤维 加筋土的抗压强度[J]. 岩土力学, 2022, 43(S2): 163-170. |
[8] | 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082. |
[9] | 魏丽, 柴寿喜, 张琳, 李瑶, . 冻融作用下三类纤维加筋固化土的抗压抗拉性能[J]. 岩土力学, 2022, 43(12): 3241-3248. |
[10] | 陈树峰, 孔令伟, 罗滔, . 超固结粉质黏土水平应力释放特征与 静止侧压力系数计算方法[J]. 岩土力学, 2022, 43(1): 160-168. |
[11] | 乔趁, 王宇, 宋正阳, 李长洪, 侯志强, . 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150. |
[12] | 杨爱武, 徐彩丽, 郎瑞卿, 王韬, . 冻融循环作用下城市污泥固化土三维力学 特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975. |
[13] | 李甜果, 孔令伟, 王俊涛, 王凤华, . 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42(10): 2741-2754. |
[14] | 张 泽, 马 巍, ROMAN Lidia, MELNIKOV Andrey, 杨 希, 李宏璧. 基于冻融次数−物理时间比拟理论的冻土 长期强度预测方法[J]. 岩土力学, 2021, 42(1): 86-92. |
[15] | 孙静, 公茂盛, 熊宏强, 甘霖睿, . 冻融循环对粉砂土动力特性影响的试验研究[J]. 岩土力学, 2020, 41(3): 747-754. |
|