岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 206-220.doi: 10.16285/j.rsm.2022.0980

• 基础理论与实验研究 • 上一篇    下一篇

渗流条件下隧道锚注复合围岩体的解析方法

周晓敏1, 2,马文著1, 2,张松1,宋宜祥3,刘勇1,和晓楠4   

  1. 1.北京科技大学 土木与资源工程学院,北京 100083;2.北京科技大学 城市地下空间工程北京市重点实验室,北京 100083; 3.河北工业大学 土木与交通学院,天津 300401;4.中国建筑第二工程局有限公司,北京 101149
  • 收稿日期:2022-06-14 接受日期:2022-10-15 出版日期:2023-11-16 发布日期:2023-11-17
  • 通讯作者: 马文著,男,1994年生,博士研究生,主要从事隧道竖井支护方面的解析及数值模拟研究。E-mail: mwz19940302@163.com E-mail:ustb_zhou@163.com
  • 作者简介:周晓敏,男,1963年生,博士,教授,博士生导师,主要从事隧道竖井支护方面的研究。
  • 基金资助:
    国家自然科学基金(No. 42272331,No. 51678048,No. 41902290)。

Analytical method for surrounding rock reinforced by bolts-grouting in tunnel under seepage

ZHOU Xiao-min1, 2, MA Wen-zhu1, 2, ZHANG Song1, SONG Yi-xiang3, LIU Yong1, HE Xiao-nan4   

  1. 1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China; 2. Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China; 4. China Construction Second Engineering Bureau Co., Ltd., Beijing 101149, China
  • Received:2022-06-14 Accepted:2022-10-15 Online:2023-11-16 Published:2023-11-17
  • Supported by:
    This work was supported ty the National Natural Science Foundation of China (42272331, 51678048, 41902290).

摘要: 锚注法是富水隧道工程中常见的地层加固和止水工法,目前仍缺乏可以同时考虑锚杆−围岩力学相互作用和注浆防水抗渗作用的解析理论。以径向锚注复合围岩体为研究对象,基于达西定律和应力均布法将注浆加固后围岩内的孔隙水压力以及锚杆对围岩的相互作用力代入被加固围岩的应力平衡方程,构建出锚注复合围岩体微分方程,求解出复合围岩体及原岩的渗流场、位移场、有效应力场及锚杆轴向应力场的解析解并进行有限元验证和对比。对比结果表明:解析结果与有限解结果一致;与仅注浆的工况相比,锚注加固可改善围岩的应力状态。然后,基于所得解析解,揭示并讨论了锚注加固参数、支护力、二衬抗渗压力等参数和条件对隧道锚注复合围岩体安全系数的影响规律。规律指出:锚注范围、锚杆密度因子及支护力的增加使安全系数分别以先快后慢、准线性及先慢后快的趋势提高;二衬抗渗压力的增加虽然可减小涌水量,但不利于隧道的稳定。最后,基于所提出的解析解给出了锚杆的参数优化设计方法并给出算例。上述研究成果可为渗流隧道的锚注加固设计提供解析理论参考。

关键词: 隧道工程, 锚注加固, 应力均布法, 安全系数, 优化设计

Abstract: Bolts-grouting is a common reinforcement and waterproofing method in water-rich tunnel engineering. At present, there is still a lack of analytical theories that can simultaneously consider the mechanical interaction between rockbolt and surrounding rock, as well as the waterproof and impermeable effects of grouting. Based on Darcy’s law and "smeared" method, a differential equation of rock bolts-grouting composite surrounding rock was established by substituting the pore water pressure in the surrounding rock after grouting reinforcement and the interaction force between the rockbolt and the surrounding rock into the stress equilibrium equation of the reinforced surrounding rock. By solving the proposed differential equation, the closed-form solutions for pore pressure, displacement, and effective stress on bolts-grouting composite surrounding rock, and stress on the rockbolt are obtained and compared with numerical solutions and the solutions of other scholars. The comparison results show that the analytical results are consistent with the finite element solution; and bolts-grouting reinforcement can improve the stress state of surrounding rock compared with grouting only. Furthermore, based on our closed-form solutions, and the effect of bolts-grouting reinforcement parameters, support pressure, impermeability pressure of lining, and diameter of the tunnel on safety factor is elaborated. These laws indicate that with the increases of bolts-grouting range, rockbolts density factor and supporting pressure, the safety factor increases in the ways of first fast then slow, quasi-linear and first slow then fast, respectively. The increase of impermeability pressure on secondary lining can reduce the water inflow, but it is not conducive to the stability of the tunnel. Finally, based our closed-form solutions, we propose the method of parameter optimization for the bolts-grouting reinforcement in the tunnel as well as case study.

Key words: tunnel engineering, bolts-grouting reinforcement, smeared method, safety factor, optimization design

中图分类号: 

  • TU 457
[1] 孙闯, 兰思琦, 陶琦, 关喜彬, 韩希平, . 深埋隧道软弱围岩拱顶三维渐进性塌落机制上限分析[J]. 岩土力学, 2023, 44(9): 2471-2484.
[2] 张硕成, 陈文化. 考虑不均匀冻胀土体-衬砌隧道在寒区的振动响应[J]. 岩土力学, 2023, 44(5): 1467-1476.
[3] 肖国峰. 改进的岩质凸块的超载储备极限平衡法[J]. 岩土力学, 2023, 44(2): 425-432.
[4] 阮永芬, 张虔, 乔文件, 裴利华, 闫明, 郭宇航, . 基于C-V-T模型的盾构穿越既有桥梁施工风险评估[J]. 岩土力学, 2023, 44(2): 552-562.
[5] 李雨婷, 陈晓斌, 何鹏鹏, . 砂土中海上锚板抗拔极限状态的可靠度分析[J]. 岩土力学, 2023, 44(12): 3495-3500.
[6] 崔光耀, 麻建飞, 宁茂权, 唐再兴, 刘顺水, 田宇航, . 超大矩形顶管盾构隧道近接下穿高铁施工 加固方案对比分析[J]. 岩土力学, 2022, 43(S2): 414-424.
[7] 张文莲, 孙晓云, 陈勇, 金申熠, . 基于岩体抗压强度折减的边坡稳定性分析方法[J]. 岩土力学, 2022, 43(S2): 607-615.
[8] 董建华, 徐斌, 吴晓磊, 连博, . 隧道分级让压支护作用下围岩 弹塑性变形全过程解析[J]. 岩土力学, 2022, 43(8): 2123-2135.
[9] 李鹏飞, 勾宝亮, 朱萌, 高晓静, 郭彩霞. 基于镜像法的隧道地表沉降时间效应计算方法[J]. 岩土力学, 2022, 43(3): 799-807.
[10] 袁帅, 冯德旺, 张森豪, 邢运鹏, 柯尊启, . 考虑水力参数空间变异性的盾构 隧道开挖面稳定性分析[J]. 岩土力学, 2022, 43(11): 3153-3162.
[11] 陈栋, 李红军, 朱凯斌. 基于新主滑趋势方向的矢量和边坡稳定分析方法[J]. 岩土力学, 2021, 42(8): 2207-2214.
[12] 宋战平, 郭德赛, 徐甜, 华伟雄, . 基于非线性模糊层次分析法的TBM 施工风险评价模型研究[J]. 岩土力学, 2021, 42(5): 1424-1433.
[13] 仉文岗, 王琦, 刘汉龙, 陈福勇, . 岩体空间变异性对隧道拱顶失效概率的影响[J]. 岩土力学, 2021, 42(5): 1462-1472.
[14] 章瑞环, 叶帅华, 陶晖. 基于改进极限平衡法的多级均质黄土边 坡稳定性分析[J]. 岩土力学, 2021, 42(3): 813-825.
[15] 卢锋, 仇文革, . 基于能量演化理论的多参数非等比例折减的 安全系数求解方法[J]. 岩土力学, 2021, 42(2): 547-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钱建固,吕玺琳,黄茂松. 平面应变状态下土体的软化特性与本构模拟[J]. , 2009, 30(3): 617 -622 .
[2] 李新平,孟 建,徐鹏程. 溪洛渡水电站出线竖井爆破振动效应研究[J]. , 2011, 32(2): 474 -480 .
[3] 张其一,栾茂田. 复合加载情况下非均质地基上条形基础的极限承载力研究[J]. , 2009, 30(5): 1281 -1286 .
[4] 赵宝友,马震岳,梁 冰,金长宇. 基于损伤塑性模型的地下洞室结构地震作用分析[J]. , 2009, 30(5): 1515 -1521 .
[5] 王长柏,李海波,周青春,夏 祥. P波作用下深埋隧道动应力集中问题参数敏感性分析[J]. , 2011, 32(3): 775 -780 .
[6] 宋勇军 ,雷胜友 ,韩铁林 . 一种新的岩石非线性黏弹塑性流变模型[J]. , 2012, 33(7): 2076 -2080 .
[7] 王光进 ,杨春和 ,孔祥云 ,刘天宁 . 超高台阶排土场散体块度分布规律及抗剪强度参数的研究[J]. , 2012, 33(10): 3087 -3092 .
[8] 洪 武 ,周健南 ,徐 迎 ,金丰年 ,范华林 . 拱形结构爆炸作用荷载分布规律研究[J]. , 2012, 33(11): 3407 -3413 .
[9] 林 江 ,胡万雨 ,孟凡理 ,邓建辉 ,陈佳伟 . 瀑布沟大坝心墙拱效应分析[J]. , 2013, 34(7): 2031 -2035 .
[10] 闫澍旺 ,霍知亮 ,孙立强 ,刘 润 . 海上风电机组筒型基础工作及承载特性研究[J]. , 2013, 34(7): 2036 -2042 .