岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 414-424.doi: 10.16285/j.rsm.2021.1682

• 岩土工程研究 • 上一篇    下一篇

超大矩形顶管盾构隧道近接下穿高铁施工 加固方案对比分析

崔光耀1,麻建飞2,宁茂权3, 4,唐再兴3, 4,刘顺水3, 4,田宇航1   

  1. 1. 北方工业大学 土木工程学院,北京 100144;2. 北京交通大学 土木建筑工程学院,北京 100044; 3. 中铁第四勘察设计院集团有限公司,湖北 武汉 430064;4. 海峡(福建)交通工程设计有限公司,福建 福州 350004
  • 收稿日期:2021-10-06 修回日期:2022-02-16 出版日期:2022-10-10 发布日期:2022-10-09
  • 通讯作者: 麻建飞,男,1997年生,博士研究生,主要从事隧道与地下工程方面的研究。E-mail: majfncut@163.com E-mail:cyao456@163.com
  • 作者简介:崔光耀,男,1983年生,博士,教授,主要从事隧道与地下工程方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No.52178378);中铁第四勘察设计院集团有限公司科技研究开发项目(No.2020K143)。

Comparative analysis of construction reinforcement scheme of super large rectangular pipe jacking shield tunnel close to and under high-speed railway

CUI Guang-yao1, MA Jian-fei2, NING Mao-quan3, 4, TANG Zai-xing3, 4, LIU Shun-shui3, 4, TIAN Yu-hang1   

  1. 1. School of Civil Engineering, North China University of Technology, Beijing 100144, China; 2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430064, China; 4. Haixia Traffic Engineering Design Co., Ltd., Fuzhou, Fujian 350004, China
  • Received:2021-10-06 Revised:2022-02-16 Online:2022-10-10 Published:2022-10-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52178378) and the Research and Development Project for Scientific and Technological of China Railway Siyuan Survey and Design Group Co., Ltd., (2020K143).

摘要: 为保证超大矩形顶管盾构隧道近接下穿高铁的施工安全,以某矩形顶管盾构涉铁工程为背景,研究软弱地层中超大矩形顶管盾构近接高铁施工的安全性。结果表明:软弱地层中超大矩形顶管盾构近接高铁施工时轨道沉降和管节安全系数远超控制阈值,必须采取施工加固方案;采取超前注浆可使轨道沉降减小 58.20%,管节最小安全系数提高至 1.35;采用人工挖孔桩+D型钢便梁可使轨道沉降减小 63.05%,最小安全系数增至 9.49;采用桩板结构加固可使轨道沉降减小 70.90%,最小安全系数增至9.00;人工挖孔桩+D型钢便梁加固方案和桩板结构加固方案的效果明显优于超前注浆的加固效果,推荐在下穿待建高铁段采用桩板结构加固方案,在下穿既有高铁段采用人工挖孔桩+D型钢便梁加固方案。现场监测结果表明:超大矩形顶管盾构在近接下穿待建福厦高铁段采用桩板结构后,顶管掘进导致的地表沉降最大值为 3.25 mm,在近接下穿既有杭深线段采用人工挖孔桩+D型钢便梁后,高铁轨道最大沉降仅为1.65 mm,均远小于沉降阈值,超大矩形顶管盾构顺利近接下穿待建福厦线和既有杭深线。研究结论可为类似大尺寸隧道的近接工程提供参考。

关键词: 隧道工程, 矩形顶管盾构, 近接施工, 加固方案, 软弱地层

Abstract: To ensure the construction safety of super-large rectangular pipe jacking shield tunnel adjacent to the high-speed railway, based on an actual railway related project, the safety of super-large rectangular pipe jacking shield close to high-speed railway in soft stratum is studied. The results show that the track settlement and pipe segment safety factor far exceed the control threshold during the construction, so the reinforcement scheme must be adopted. The track settlement can be reduced by 58.20% and the minimum safety factor of pipe segment can be increased to 1.35 by adopting advance grouting scheme. Using manually dug pile and D-shaped beam can reduce the track settlement by 63.05% and increase the minimum safety factor to 9.49. After adopting the pile-plate reinforcement scheme, the track settlement can be reduced by 70.90% and the minimum safety factor can be increased to 9.00. The reinforced effects of manually dug pile and D-shaped beam scheme and pile-plate scheme is significantly better than that of advance grouting. It is recommended to adopt the pile-plate scheme in the section under the high-speed railway to be built, and the manually dug pile and D-shaped beam scheme in the section under the existing high-speed railway. The on-site monitoring results show that the maximum surface settlement caused by pipe jacking tunneling is 3.25 mm after the super-large rectangular pipe jacking shield passes through the Fuzhou-Xiamen railway section to be built. After the manually dug pile and D-shaped beam is adopted for the existing Hangzhou-Shenzhen section, the maximum settlement of the high-speed railway track is only 1.65 mm. Both track settlement and surface settlement are far less than the settlement threshold. The super-large rectangular pipe jacking shield successfully crosses the Fuzhou-Xiamen Railway and Hangzhou-Shenzhen Railway. The research conclusion can provide reference for similar large-scale tunnel proximity engineering.

Key words: tunnel engineering, rectangular pipe jacking shield tunnel, approach construction, reinforcement scheme, weak stratum

中图分类号: 

  • TU457
[1] 董建华, 徐斌, 吴晓磊, 连博, . 隧道分级让压支护作用下围岩 弹塑性变形全过程解析[J]. 岩土力学, 2022, 43(8): 2123-2135.
[2] 李鹏飞, 勾宝亮, 朱萌, 高晓静, 郭彩霞. 基于镜像法的隧道地表沉降时间效应计算方法[J]. 岩土力学, 2022, 43(3): 799-807.
[3] 宋战平, 郭德赛, 徐甜, 华伟雄, . 基于非线性模糊层次分析法的TBM 施工风险评价模型研究[J]. 岩土力学, 2021, 42(5): 1424-1433.
[4] 严健, 何川, 晏启祥, 许金华. 雀儿山隧道冰碛地层冻胀力原位测试及计算分析[J]. 岩土力学, 2019, 40(9): 3593-3602.
[5] 于 正, 杨龙才, 张 勇, 赵 伟, . 考虑地层变异特征一致性的围岩变形不确定性分析[J]. 岩土力学, 2019, 40(5): 1947-1956.
[6] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[7] 王剑锋, 李天斌, 马春驰, 张航, 韩瑀萱, 周雄华, 姜宇鹏, . 基于引力搜索法的隧道围岩微震定位研究[J]. 岩土力学, 2019, 40(11): 4421-4428.
[8] 闫高明, 申玉生, 高 波, 郑 清, 范凯祥, 黄海峰. 穿越黏滑断层分段接头隧道模型试验研究[J]. 岩土力学, 2019, 40(11): 4450-4458.
[9] 莫品强, 高新慰, 黄子丰, 马丹阳, . 下穿隧道开挖引起的挤土桩沉降控制分析方法[J]. 岩土力学, 2019, 40(10): 3823-3832.
[10] 谷拴成,周 攀,黄荣宾. 锚杆–围岩承载结构支护下隧洞稳定性分析[J]. , 2018, 39(S1): 122-130.
[11] 李小飞,孙江涛,陈卫忠,袁敬强,刘金泉,张庆艳,. 纤维硅灰水泥石强度与浆液抗冲刷特性[J]. , 2018, 39(9): 3157-3163.
[12] 刘 聪,李术才,周宗青,李利平,王 康,侯福金, 秦承帅,高成路,. 复杂地层超大断面隧道施工围岩力学特征模型试验[J]. , 2018, 39(9): 3495-3504.
[13] 吴顺川,韩 伟,陈 钒,徐淼斐,丛子杰,. 基于膨胀本构的石膏岩隧道衬砌缓冲层厚度优化研究[J]. , 2018, 39(4): 1182-1191.
[14] 李 韬,徐奴文,戴 峰,李天斌,樊义林,李 彪,. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J]. , 2018, 39(2): 665-674.
[15] 腾俊洋,张宇宁,唐建新,张 闯,李臣林, . 锚固方式对节理岩体剪切性能影响试验研究[J]. , 2017, 38(8): 2279-2285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵明华,刘小平,黄立葵. 降雨作用下路基裂隙渗流分析[J]. , 2009, 30(10): 3122 -3126 .
[2] 关伶俐,田洪铭,陈卫忠. 煤岩力学特性及其工程应用研究[J]. , 2009, 30(12): 3715 -3719 .
[3] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[4] 顾强康,李 宁,黄文广. 机场高填土地基工后不均匀沉降指标研究[J]. , 2009, 30(12): 3865 -3870 .
[5] 柴华友,韦昌富. 刚度缓变介质中瑞利波特性[J]. , 2009, 30(9): 2545 -2551 .
[6] 肖文联,李 闽,赵金洲,郑玲丽,李丽君. 低渗致密砂岩渗透率应力敏感性试验研究[J]. , 2010, 31(3): 775 -779 .
[7] 杨 涛,周德培,马惠民,张忠平. 滑坡稳定性分析的点安全系数法[J]. , 2010, 31(3): 971 -975 .
[8] 查甫生,刘松玉,杜延军,崔可锐. 基于电阻率的非饱和土基质吸力预测[J]. , 2010, 31(3): 1003 -1008 .
[9] 王桂杰,谢谟文,邱 骋,江崎哲郎. D-INSAR技术在大范围滑坡监测中的应用[J]. , 2010, 31(4): 1337 -1344 .
[10] 任连伟,刘汉龙,张华东,郑 浩. 高喷插芯组合桩承载力计算及影响因素分析[J]. , 2010, 31(7): 2219 -2225 .