岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 728-740.doi: 10.16285/j.rsm.2022.0524

• 基础理论与实验研究 • 上一篇    下一篇

干湿−冻融循环条件下膨胀土的压缩及渗透特性变化规律

张凌凯1, 2,崔子晏1, 2   

  1. 1. 新疆农业大学 水利与土木工程学院,新疆 乌鲁木齐 830052; 2. 新疆农业大学 新疆水利工程安全与水灾害防治重点实验室,新疆 乌鲁木齐 830052
  • 收稿日期:2022-04-14 接受日期:2022-09-27 出版日期:2023-03-21 发布日期:2023-03-24
  • 通讯作者: 崔子晏,男,1992年生,硕士研究生,主要从事于膨胀土力学特性方面研究工作。E-mail: cuiziyan@163.com E-mail:xjau_zlk@163.com
  • 作者简介:张凌凯,男,1987年生,博士,副教授,主要从事环境岩土工程方面的研究工作。
  • 基金资助:
    新疆维吾尔自治区水利科技专项资金项目(XSXJ-2023-22);新疆维吾尔自治区自然科学基金杰出青年科学基金项目(No.2022D01E45);新疆维吾尔自治区寒旱区水资源与生态水利工程研究中心(院士专家工作站)项目(No.2022.C-001)。

Compression and permeability characteristics of expansive soil under drying-wetting-freezing-thawing cycles

ZHANG Ling-kai1, 2, CUI Zi-yan1, 2   

  1. 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China; 2. Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
  • Received:2022-04-14 Accepted:2022-09-27 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the Xinjiang Uygur Autonomous Region Water Conservancy Science and Technology Special Fund Project(XSXJ-2023-22), the Natural Science Foundation of Xinjiang Uygur Autonomous Region Outstanding Youth Science Fund Project(2022D01E45) and the Xinjiang Uygur Autonomous Region Cold and Arid Region Water Resources and Ecological Water Conservancy Project Research Center (Academician Expert Workstation) Project (2022.C-001).

摘要: 北疆供水一期工程穿越膨胀土区域,历经多次干湿−冻融循环后力学特性衰减严重,易产生渠坡局部浅层滑坡和冻胀破坏等现象。为深入研究其劣化机制,通过干湿−冻融循环条件下的压缩试验、渗透试验和SEM微观扫描试验,从宏−细−微观多角度分析其压缩和渗透指标的变化规律。研究结果表明:随干湿−冻融循环次数的增加,膨胀土整体压缩性增大,其压缩曲线可分为拟弹性段与拟塑性段;随循环次数的增加,回弹指数呈波动趋势,压缩指数与循环次数呈指数正相关,与细−微观裂隙呈线性正相关。黏土颗粒在循环作用下组成“团聚体−孔隙−填充颗粒”形式的较松散的临时结构,絮凝结构增加,各向异性减少;土样承受竖向压力时,膨胀土孔隙间距减少,压缩性较大;压力超过固结屈服应力时,团聚体颗粒扁角化、极角频率增加、孔隙压密,压缩性逐渐稳定。渗透系数在循环过程中变化分为缓慢、迅速、稳定3个阶段;渗透系数在第5次循环变化较大,第7次循环后逐渐稳定,与循环次数及表面裂隙率呈正相关趋势。渗透系数与各项微观参数的灰色关联度均大于0.65,微观孔隙率是最主要的影响因素;循环作用下微观孔隙发育明显,形成新渗流通道,渗透系数与微观孔隙率呈线性正相关。

关键词: 干湿?冻融循环, 膨胀土, 压缩特性, 渗透特性, 微观机制

Abstract: The first phase of water supply project in northern Xinjiang crossed the expansive soil area, and the mechanical properties of expansive soil are seriously weakened after repeated drying-wetting-freezing-thawing cycles, which cause local shallow landslide and frost heave damage of the canal slope. To further explore the deterioration mechanism of expansive soil canal slope, the changes of compression and permeability indexes are analyzed from macro-, meso-, and micro-perspectives through the compression test, the permeability test, and the SEM microscopic scanning test under drying-wetting-freezing-thawing cycles. The overall compressibility of expansive soil increases with the increase of drying-wetting-freezing-thawing cycles, and its compression curve can be divided into pseudo-elastic section and pseudo-plastic section. With the increase in the number of cycles, the rebound index shows a fluctuation tendency. The compression index is exponentially positively correlated with the number of cycles, and it is linearly correlated with the meso-micro cracks. Under the action of drying-wetting-freezing-thawing cycle, clay particles form a loose temporary structure of 'aggregates-pores-filled particles', flocculation structure increases, and anisotropy decreases. When the soil sample is subjected to vertical pressure, the pore spacing of expansive soil decreases, and the compressibility is large. When the pressure exceeds the consolidation yield stress, the aggregate particles become flat, the polar angular frequency increases, the pores are compacted, and the compressibility is gradually stabilized. Three stages i.e., slow, rapid, and stable stages, are identified in variation of permeability coefficient in the cycle process. The permeability coefficient changes greatly in the fifth cycle, and gradually stabilizes after 7 cycles, which is positively correlated with the number of cycles and surface fracture rate. The grey correlation degrees between the permeability coefficient and microscopic parameters are greater than 0.65, and microscopic porosity is the most important influencing factor. Under cyclic action, the microscopic pores develop obviously and form new seepage channels. The permeability coefficient is linearly and positively correlated with the microscopic porosity.

Key words: drying-wetting-freezing-thawing cycles, expansive soil, compression test, permeability test, micro mechanism

中图分类号: 

  • TU411
[1] 高浩东, 安然, 孔令伟, 张先伟, 雷学文, . 干燥失水条件下膨胀土的细观裂隙演化特征研究[J]. 岩土力学, 2023, 44(2): 442-450.
[2] 庄心善, 周荣, 周睦凯, 陶高梁, 金合意. 孔隙溶液对循环荷载作用下膨胀土 累积变形及阻尼比影响研究[J]. 岩土力学, 2022, 43(S2): 1-10.
[3] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[4] 刘宽, 叶万军, 高海军, 董琪, . 酸碱污染黄土抗剪强度演化规律及微观机制[J]. 岩土力学, 2022, 43(S1): 1-12.
[5] 张磊, 田苗苗, 卢硕, 李明雪, 李菁华, . 不同含水率煤体液氮致裂渗透率变化规律 及应力敏感性分析[J]. 岩土力学, 2022, 43(S1): 107-116.
[6] 喻成成, 卢正, 姚海林, 刘杰, 詹永祥, . 微生物诱导碳酸钙沉淀改性膨胀土试验研究[J]. 岩土力学, 2022, 43(S1): 157-163.
[7] 刘观仕, 赵守道, 牟智, 莫燕坤, 赵青松, . 结构性对膨胀土收缩特性影响的试验研究[J]. 岩土力学, 2022, 43(7): 1772-1780.
[8] 李新明, 贾亚垒, 王志留, 尹松. 原状膨胀土剪切力学特性的应变速率效应[J]. 岩土力学, 2022, 43(12): 3327-3334.
[9] 庄心善, 周睦凯, 陶高梁, 周 荣, 彭承鸿, 林万锋. 循环荷载下发泡聚苯乙烯改良膨胀土动弹性 模量与阻尼比试验研究[J]. 岩土力学, 2021, 42(9): 2427-2436.
[10] 张志韬, 陈生水, 吉恩跃, 傅中志, . 聚丙烯纤维加筋砾质黏土的拉伸断裂特性研究[J]. 岩土力学, 2021, 42(10): 2713-2721.
[11] 王东星, 陈政光, . 氯氧镁水泥固化淤泥力学特性及微观机制[J]. 岩土力学, 2021, 42(1): 77-85.
[12] 商拥辉, 徐林荣, 蔡雨, . 浸水环境下重载铁路改良土路基动力特性研究[J]. 岩土力学, 2020, 41(8): 2739-2745.
[13] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[14] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[15] 刘华, 何江涛, 赵茜, 王铁行, 郭超翊, . 酸污染原状黄土渗透微观特征演变规律试验研究[J]. 岩土力学, 2020, 41(3): 765-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于小军,施建勇,徐杨斌. 考虑各向异性的软黏土扰动状态本构模型[J]. , 2009, 30(11): 3307 -3312 .
[2] 高 玮. 基于蚁群聚类算法的岩石边坡稳定性分析[J]. , 2009, 30(11): 3476 -3480 .
[3] 徐 彬,殷宗泽,刘述丽. 膨胀土强度影响因素与规律的试验研究[J]. , 2011, 32(1): 44 -50 .
[4] 代仁平,郭学彬,宫全美,蒲传金,张志呈. 隧道围岩爆破损伤防护的霍普金森压杆试验[J]. , 2011, 32(1): 77 -83 .
[5] 杨 洋, 姚海林,卢 正. 蒸发条件下路基对气候变化的响应模型及影响因素分析[J]. , 2009, 30(5): 1209 -1214 .
[6] 邓亚虹,夏唐代,彭建兵,李喜安,黄强兵. 水平层状场地自振频率的剪切质点系法研究[J]. , 2009, 30(8): 2489 -2494 .
[7] 左宇军 ,李术才 ,秦泗凤 ,李利平. 对隔水底板破断突水机制的突变理论分析的认识——兼对潘岳教授等提问的答复[J]. , 2011, 32(7): 2236 -2240 .
[8] 楚锡华. 颗粒材料数值样本的坐标排序生成技术[J]. , 2011, 32(9): 2852 -2855 .
[9] 王忠福 ,刘汉东 ,贾金禄 ,黄志全 ,姜 彤 . 大直径深长钻孔灌注桩竖向承载力特性试验研究[J]. , 2012, 33(9): 2663 -2670 .
[10] 林鲁生 ,蒋 刚 ,白世伟 ,刘祖德 . 土体抗剪强度参数取值的统计分析方法[J]. , 2003, 24(2): 277 -280 .