岩土力学 ›› 2022, Vol. 43 ›› Issue (7): 1772-1780.doi: 10.16285/j.rsm.2021.1766

• 基础理论与实验研究 • 上一篇    下一篇

结构性对膨胀土收缩特性影响的试验研究

刘观仕1,赵守道2,牟智3,莫燕坤3,赵青松3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 长安大学 水利与环境学院 陕西 西安 710064;3. 桂林理工大学 广西岩土力学与工程重点实验室,广西 桂林 541004
  • 收稿日期:2021-10-21 修回日期:2022-03-28 出版日期:2022-07-26 发布日期:2022-08-03
  • 作者简介:刘观仕,男,1974年生,博士,副研究员,主要从事膨胀土裂隙与变形等方面的研究。
  • 基金资助:
    国家重点研发计划(No. 2019YFC1509901);国家自然科学基金(No. 51279200)

Experimental study of the influence of structure on the shrinkage characteristics of expansive soil

LIU Guan-shi1, ZHAO Shou-dao2, MOU Zhi3, MO Yan-kun3, ZHAO Qing-song3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. School of Water and Enviroment, Chang’an University, Xi’ an, Shaanxi 710064, China; 3. Guangxi Key Laboratory of Geotechnical Mechanics and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2021-10-21 Revised:2022-03-28 Online:2022-07-26 Published:2022-08-03
  • Supported by:
    This work was supported by the National Key R & D Plan (2019YFC1509901) and the National Natural Science Foundation of China (51279200).

摘要: 膨胀土的收缩性明显,容易引发边坡与地基开裂,但有关结构性对收缩特性影响的认识甚少。采用收缩自动试验装置,在恒湿恒温条件下对原状膨胀土和重塑膨胀土开展了收缩对比试验和扫描电镜(scanning electron microscope,简称SEM)测试分析,结果表明:与原状土相比,重塑土在土中水流动阶段的蒸发速率较小,蒸汽扩散阶段收缩稳定速率较慢,最终体积收缩应变量更大;重塑土体积收缩−含水率关系曲线的线性段较长,斜率较大,直线段与稳定段之间的过渡不明显,而原状土则反之;重塑土和原状土的收缩特征曲线(soil shrinkage characteristic curves,简称SSC)在较高含水率段基本重合,随着含水率下降,重塑土的SSC下降更快,对应的含水率范围更宽,最后进入残余−零收缩阶段时,孔隙比明显较小;Chertkov收缩模型适用于原状膨胀土,但不适用于重塑膨胀土。SEM测试结果表明,原状膨胀土较重塑膨胀土具有更强的原生结构性,初始密度与湿度相同情况下,两者颗粒排列、接触方式、胶结状态、孔隙大小与分布特征等微观结构上差异明显,导致蒸发过程中重塑土的水分迁移速率较小、基质吸力较大,是重塑土收缩更剧烈的内在原因。研究结果可为膨胀土边坡的坡面工程防护设计提供参考依据。

关键词: 膨胀土, 收缩, 微观结构, 孔隙, 扫描电镜

Abstract: Shrinkage is inherent to expansive soil, usually resulting in slope and foundation cracking, but there is little understanding about the influence of structure on shrinkage characteristics. Using an automatic shrinkage test device, comparison tests on shrinkage and scanning electron microscope (SEM) tests for undisturbed and remolded expansive soil were carried out under the same humidity and constant temperature. The results show that compared with undisturbed soil, remolded soil has smaller evaporation rate in the water flow stage, slower shrinkage stability rate in the vapor evaporation stage and larger volume shrinkage strain in the end. For the remolded soil, the linear section of the curve of volume shrinkage versus water content is longer, the slope larger, and the transition between the linear section and the stable section not obvious, while the undisturbed soil is on the contrary. The soil shrinkage characteristic curves (SSC) of remolded and undisturbed soil basically coincide in the section at higher water content; with the decrease of water content, the SSC of remolded soil decreases faster and the corresponding water content range is wider, and when entering the residual-zero shrinkage stage, the void ratio is obviously smaller. Chertkov shrinkage model is suitable for undisturbed expansive soil, but not for remolded one. SEM test results show that the undisturbed expansive soil has stronger primary structure than remolded expansive soil. Under the same initial density and humidity, there exists obvious differences in microstructure, such as particle arrangement, contact mode, cementation state, pore size and distribution characteristics between the undisturbed and remolded expansive soil, resulting in smaller water migration rate and larger matrix suction of remolded soil during evaporation, which is the internal reason why remolded soil shrinks more violently than undisturbed soil. The research results can provide a reference basis for the design of slope engineering protection for expansive soil slopes.

Key words: expansive soil, shrinkage, microstructure, pore, SEM

中图分类号: 

  • TU 475
[1] 庄心善, 周荣, 周睦凯, 陶高梁, 金合意. 孔隙溶液对循环荷载作用下膨胀土 累积变形及阻尼比影响研究[J]. 岩土力学, 2022, 43(S2): 1-10.
[2] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[3] 曾召田, 梁珍, 邵捷昇, 徐云山, 吕海波, 潘斌, . 碱−热环境下MX80膨润土导热性能试验研究[J]. 岩土力学, 2022, 43(S2): 155-162.
[4] 魏丽, 柴寿喜, 刘著, 王沛, 李芳, . 以扫描电镜与核磁共振指标评价冻融纤维 加筋土的抗压强度[J]. 岩土力学, 2022, 43(S2): 163-170.
[5] 李识博, 代俊芳, 吴江伟, 肖乐乐, . 考虑粒组分类影响的最小孔隙比分布及模型验证[J]. 岩土力学, 2022, 43(S2): 193-204.
[6] 马登辉, 韩迅, 关云飞, 唐译, . 珊瑚颗粒孔隙结构及渗流特性分析[J]. 岩土力学, 2022, 43(S2): 223-230.
[7] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[8] 喻成成, 卢正, 姚海林, 刘杰, 詹永祥, . 微生物诱导碳酸钙沉淀改性膨胀土试验研究[J]. 岩土力学, 2022, 43(S1): 157-163.
[9] 申嘉伟, 周博, 付茹, 库泉, 汪华斌, . 钙质砂单颗粒破碎强度和模式的试验研究[J]. 岩土力学, 2022, 43(S1): 312-320.
[10] 雷华阳, 张文振, 霍海峰, 冯双喜, 李其昂, 刘汉磊, . 水汽补给下砂土冻胀量与微观结构参数关联研究[J]. 岩土力学, 2022, 43(9): 2337-2346.
[11] 张雷, 吕延栋, 王炳辉, 金丹丹, 竺明星, 方晨, . 絮凝−真空−电渗联合加固滩涂软土的模型试验研究[J]. 岩土力学, 2022, 43(9): 2383-2390.
[12] 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430.
[13] 屈永龙, 杨更社, 奚家米, 何晖, 丁潇, 张猛, . 低温−加载作用下白垩系砂岩的变形 破坏特性试验研究[J]. 岩土力学, 2022, 43(9): 2431-2442.
[14] 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549.
[15] 高游, 李泽, 孙德安, 于海浩, 陈波, . 考虑初始孔隙比影响的单/双峰土−水特征曲线 模型研究[J]. 岩土力学, 2022, 43(6): 1441-1452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .