岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 155-162.doi: 10.16285/j.rsm.2021.0589
曾召田1,梁珍1,邵捷昇1,徐云山1,吕海波1, 2,潘斌1
ZENG Zhao-tian1, LIANG Zhen1, SHAO Jie-sheng1, XU Yun-shan1, LÜ Hai-bo1, 2, PAN Bin1
摘要: 以美国怀俄明州钠基(MX80)膨润土为研究对象,采用热探针法测定碱−热环境下MX80 膨润土的导热系数,探讨了温度、碱液强度和干密度对试样导热系数λ的影响规律,并选择部分试样进行了X射线衍射(X-ray diffraction,简称XRD)和扫描电镜(scanning electron microscope,简称SEM)试验,揭示了碱−热环境下 MX80 膨润土导热性能演变的微观机制。试验结果表明:MX80 膨润土的导热系数λ随碱液含量和干密度的递增而增大;在不同碱液含量条件下,膨润土的导热系数均随温度升高而增大,且碱液含量越高,导热系数的温度效应越显著;干密度较小时,膨润土导热系数λ随温度升高而增大的影响越明显,主要原因是温度促进了试样内部的水汽潜热传输;同一温度和干密度条件下,热传导系数λ随着碱液pH值的升高而降低 6,且 pH值越高,则λ 降幅越明显,主要原因是强碱溶液腐蚀了膨润土的蒙脱石成分,减少了试样内石英含量,增大了膨润土试样的孔隙率,进而降低了膨润土导热系数,这与测试试样的 XRD 和 SEM 结果相吻合。
中图分类号:
[1] | 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96. |
[2] | 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374. |
[3] | 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340. |
[4] | 王燕星, 李驰, 葛晓东, 高利平, . 黄河流域内蒙古段砒砂岩风化土微生物 矿化改良的试验研究[J]. 岩土力学, 2022, 43(3): 708-718. |
[5] | 詹良通, 丁兆华, 谢世平, 李育超, 何顺辉, . 竖向阻隔墙中土工复合膨润土防水毯搭接 区渗透系数测试与分析[J]. 岩土力学, 2021, 42(9): 2387-2394. |
[6] | 刘俊新, 唐伟, 李军润, 张建新, 郭招群, 陈龙, 刘育田, . 高温及碱性条件对高庙子钠基膨润土膨胀力的影响[J]. 岩土力学, 2021, 42(8): 2160-2172. |
[7] | 胡云世, 徐云山, 孙德安, 陈波, 曾召田, . 温度对颗粒膨润土热传导特性的影响[J]. 岩土力学, 2021, 42(7): 1774-1782. |
[8] | 王英, 张虎元, 童艳梅, 周光平, . 接缝密封材料对缓冲砌块屏障封闭性能的影响[J]. 岩土力学, 2021, 42(6): 1648-1658. |
[9] | 张虎元, 丁志南, 谭煜, 朱江鸿, 曹志伟, . 压实膨润土-砂混合物最佳养护湿度研究[J]. 岩土力学, 2021, 42(11): 2925-2933. |
[10] | 金爱兵, 巨有, 孙浩, 赵怡晴, 李海, 张舟, 陆通, . 相变储能充填体孔隙结构及强度劣化机制研究[J]. 岩土力学, 2021, 42(10): 2623-2633. |
[11] | 郑维翰, 李涛, 冯硕, 高玉峰, 刘月妙, . 高压实膨润土砌块接缝组合 热−水−力耦合效应试验装置研制及应用[J]. 岩土力学, 2021, 42(10): 2908-2918. |
[12] | 张虎元, 赵秉正, 童艳梅, . 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-8. |
[13] | 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131. |
[14] | 彭磊, 陈兵. 基于同步辐射小角X射线散射和液氮吸附 所测分维计算高庙子膨润土膨胀变形[J]. 岩土力学, 2020, 41(8): 2712-2721. |
[15] | 毛家骅, 袁大军, 杨将晓, 张兵, . 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292. |
|