岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 155-162.doi: 10.16285/j.rsm.2021.0589

• 基础理论与实验研究 • 上一篇    下一篇

碱−热环境下MX80膨润土导热性能试验研究

曾召田1,梁珍1,邵捷昇1,徐云山1,吕海波1, 2,潘斌1   

  1. 1. 桂林理工大学 广西岩土力学与工程重点实验室,广西 桂林 541004;2. 贺州学院 建筑与电气工程学院,广西 贺州 542899
  • 收稿日期:2021-04-18 修回日期:2021-07-13 出版日期:2022-10-10 发布日期:2022-10-03
  • 通讯作者: 吕海波,男,1973年生,博士,教授,博士生导师,主要从事特殊土工程特性方面的研究工作。E-mail: lhb@glut.edu.cn E-mail:zengzhaotian@163.com
  • 作者简介:曾召田,男,1981年生,博士,教授,博士生导师,主要从事环境岩土工程方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No.41962014,No.42167020);广西自然科学基金项目(No.2018GXNSFAA138182,No.2018GXNSFDA281038)

Experimental study on thermal conductivity of MX80 bentonite under alkali-thermal environment

ZENG Zhao-tian1, LIANG Zhen1, SHAO Jie-sheng1, XU Yun-shan1, LÜ Hai-bo1, 2, PAN Bin1   

  1. 1. Guangxi Key Laboratory of Geotechnical Mechanics and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China; 2. School of Architecture and Electrical Engineering, Hezhou University, Hezhou, Guangxi 542899, China
  • Received:2021-04-18 Revised:2021-07-13 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41962014, 42167020) and the National Natural Science Foundation of Guangxi (2018GXNSFAA138182, 2018GXNSFDA281038).

摘要: 以美国怀俄明州钠基(MX80)膨润土为研究对象,采用热探针法测定碱热环境下MX80 膨润土的导热系数,探讨了温度、碱液强度和干密度对试样导热系数λ的影响规律,并选择部分试样进行了X射线衍射(X-ray diffraction,简称XRD)和扫描电镜(scanning electron microscope,简称SEM)试验,揭示了碱热环境下 MX80 膨润土导热性能演变的微观机制。试验结果表明:MX80 膨润土的导热系数λ随碱液含量和干密度的递增而增大;在不同碱液含量条件下,膨润土的导热系数均随温度升高而增大,且碱液含量越高,导热系数的温度效应越显著;干密度较小时,膨润土导热系数λ随温度升高而增大的影响越明显,主要原因是温度促进了试样内部的水汽潜热传输;同一温度和干密度条件下,热传导系数λ随着碱液pH值的升高而降低 6,且 pH值越高,则λ 降幅越明显,主要原因是强碱溶液腐蚀了膨润土的蒙脱石成分,减少了试样内石英含量,增大了膨润土试样的孔隙率,进而降低了膨润土导热系数,这与测试试样的 XRD 和 SEM 结果相吻合。

关键词: 膨润土, 碱?热环境, 导热系数, 孔隙特征, 扫描电镜SEM

Abstract:

To analyze the effect of various factors such as temperature, strength of alkali solution and dry density on the thermal conductivity of bentonite, thermal conductivity of MX80 bentonite in alkali-thermal environment was measured by a thermal probe method. Meanwhile, the X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests were carried out on selected samples to reveal the micro-mechanism of thermal conductivity evolution of MX80 bentonite under alkaline and thermal environment. The results show that the thermal conductivity of MX80 bentonite increases with the increase of alkali solution content and dry density. The thermal conductivity of bentonite increases with the increase of temperature under different content conditions, and the higher alkali solution content is, the more significant the temperature effect of thermal conductivity is. When the dry density is small, the influence of thermal conductivity λ of bentonite increases with the increase of temperature. The main reason is that temperature facilitates the latent heat transfer of water vapor inside the sample. At the same dry density and temperature, the thermal conductivity decreases with the increase of pH value, the higher the pH value is, the greater the decrease range of λ is. The main reason is that the strong alkali solution erodes the montmorillonite and quartz of bentonite, increases the porosity of bentonite, thereby reduces the thermal conductivity of bentonite, which is consistent with the XRD and SEM image results of the tested samples.

Key words: bentonite, alkali-thermal environment, thermal conductivity, pore characteristics, scanning electron microscope(SEM)

中图分类号: 

  • TU411
[1] 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96.
[2] 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374.
[3] 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340.
[4] 王燕星, 李驰, 葛晓东, 高利平, . 黄河流域内蒙古段砒砂岩风化土微生物 矿化改良的试验研究[J]. 岩土力学, 2022, 43(3): 708-718.
[5] 詹良通, 丁兆华, 谢世平, 李育超, 何顺辉, . 竖向阻隔墙中土工复合膨润土防水毯搭接 区渗透系数测试与分析[J]. 岩土力学, 2021, 42(9): 2387-2394.
[6] 刘俊新, 唐伟, 李军润, 张建新, 郭招群, 陈龙, 刘育田, . 高温及碱性条件对高庙子钠基膨润土膨胀力的影响[J]. 岩土力学, 2021, 42(8): 2160-2172.
[7] 胡云世, 徐云山, 孙德安, 陈波, 曾召田, . 温度对颗粒膨润土热传导特性的影响[J]. 岩土力学, 2021, 42(7): 1774-1782.
[8] 王英, 张虎元, 童艳梅, 周光平, . 接缝密封材料对缓冲砌块屏障封闭性能的影响[J]. 岩土力学, 2021, 42(6): 1648-1658.
[9] 张虎元, 丁志南, 谭煜, 朱江鸿, 曹志伟, . 压实膨润土-砂混合物最佳养护湿度研究[J]. 岩土力学, 2021, 42(11): 2925-2933.
[10] 金爱兵, 巨有, 孙浩, 赵怡晴, 李海, 张舟, 陆通, . 相变储能充填体孔隙结构及强度劣化机制研究[J]. 岩土力学, 2021, 42(10): 2623-2633.
[11] 郑维翰, 李涛, 冯硕, 高玉峰, 刘月妙, . 高压实膨润土砌块接缝组合 热−水−力耦合效应试验装置研制及应用[J]. 岩土力学, 2021, 42(10): 2908-2918.
[12] 张虎元, 赵秉正, 童艳梅, . 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-8.
[13] 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131.
[14] 彭磊, 陈兵. 基于同步辐射小角X射线散射和液氮吸附 所测分维计算高庙子膨润土膨胀变形[J]. 岩土力学, 2020, 41(8): 2712-2721.
[15] 毛家骅, 袁大军, 杨将晓, 张兵, . 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .