岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 741-756.doi: 10.16285/j.rsm.2022.0887

• 基础理论与实验研究 • 上一篇    下一篇

热−水−力作用下圆孔花岗岩的动态损伤特征及结构模型

王春1, 2, 3,胡慢谷1,王成1   

  1. 1. 河南理工大学 能源科学与工程学院,河南 焦作 454003;2. 中南大学 资源与安全工程学院,湖南 长沙 410083; 3. 河南理工大学 煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454003
  • 收稿日期:2022-06-13 接受日期:2023-02-07 出版日期:2023-03-21 发布日期:2023-03-24
  • 作者简介:王春,男,1986年生,博士,副教授,主要从事岩石冲击动力学、采矿工艺、围岩注浆加固方面的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No.52074101,No.51904093);河南省重点研发与推广专项(科技攻关)项目(No.222102320011)

Dynamic damage characteristics and structural model of concentric perforated granite subjected to thermal-hydro-mechanical coupling

WANG Chun1, 2, 3, HU Man-gu1, WANG Cheng1   

  1. 1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China; 2. School of Resources & Safety Engineering, Central South University, Changsha, Hunan 410083, China; 3. Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, Henan 454003, China
  • Received:2022-06-13 Accepted:2023-02-07 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by National Natural Science Foundation of China (52074101, 51904093) and the Development and Promotion of Special (Science and Technology) Project of Henan Province (222102320011).

摘要: 基于深层地热能开采时储能区井筒围岩所处的工程环境,采用高温加热、不同温度水浸泡、加热−循环次数及径向冲击加载的方法模拟井筒围岩经历的高温、遇水、循环采热及热冲击等造成的动力扰动等物理力学条件。同时,以不同内孔直径的同心圆孔岩样模拟深层地热井,采用分离式霍普金森压杆试验系统开展热−水−力作用下圆孔花岗岩的动态力学试验,并结合VIC-3D非接触应变测量及数值模拟分析技术监测冲击过程中圆孔岩样裂隙萌发、形成的历程和表面应变演化的规律,揭示热−水−力作用下圆孔岩样的动态损伤破坏机制。研究结果表明:径向冲击荷载作用下圆孔花岗岩先后经历弹性变形、塑性变形、结构失稳破坏3个典型阶段;内孔直径、加热温度、浸水温度、加热−浸水循环次数4因素都弱化了圆孔花岗岩抗外界荷载的能力,但未改变其整体的变形演化规律;圆孔花岗岩的破坏模式是动态拉伸破坏,先沿冲击方向由内孔壁向岩样外壁,再垂直冲击方向由岩样外壁向内孔壁萌发、贯通裂纹,形成近垂直的两组破裂面。最后,基于圆孔花岗岩的损伤变形特征及历程,在一定假设基础上,建立动态损伤结构模型,推演了结构方程,并结合试验结果确定了方程参数,通过对比分析发现,理论拟合曲线与试验曲线具有较好的一致性,验证构建的圆孔花岗岩动态损伤结构模型是合理的。研究成果不仅揭示了圆孔结构岩样的损伤破坏机制,也可为预测深部储能区地热井筒围岩损伤变形规律提供理论参考,具有一定的科学和工程实践意义。

关键词: 热?水?力, 圆孔花岗岩, 动态损伤, 峰值荷载, 数值模拟, 结构模型

Abstract: Based on the engineering environment of the wellbore surrounding rocks in the energy storage areas during deep geothermal energy mining, the methods of high temperature heating, water immersion at different temperatures, heating-cycle times and radial impact loading were used to simulate the physical and mechanical conditions of wellbore surrounding rocks, such as dynamic disturbance caused by high temperature, water encounter, cyclic heat extraction and thermal impact. Meanwhile, the concentric perforated rock samples with different inner-hole diameters were used to simulate deep geothermal wells, and the dynamic mechanical tests of concentric perforated granite samples under the thermal-hydro-mechanical coupling were carried out by SHPB test system. VIC-3D non-contact strain measurement and numerical simulation analysis technology were used to monitor the history of fracture initiation and formation and the surface strain evolution law of concentric perforated granite samples during the impact process so as to reveal the dynamic damage mechanism of concentric perforated granite under the thermal-hydro-mechanical coupling. The results showed that the concentric perforated granite under radial impact load experienced three typical stages, i.e., elastic deformation, plastic deformation and structural instability failure successively. The four factors of inner hole diameter, heating temperature, immersion temperature and the number of heating-soaking cycles all weakened the ability of concentric perforated granite to resist external loads, but did not change its overall deformation evolution law. The failure mode of concentric perforated granite samples was dynamic tensile failure. Firstly, from inner hole wall to outer wall of rock samples along the impact direction, and then from outer wall of rock sample to inner hole wall in perpendicular impact direction, cracks initiate and coalesce, forming two sets of vertical fracture surfaces nearly perpendicular to each other. Finally, based on the damage deformation characteristics and history of the concentric perforated granite, a dynamic damage structure model was established on the basis of certain assumptions, the structure equations were deduced, and the parameters of the equations were determined by combining the test results. Comparative analysis demonstrated that the theoretical fitted curve was in good agreement with the tested curve, which verified the constructed dynamic damage structure model of concentric perforated granite was reasonable. The results not only reveal the damage and failure mechanism of concentric perforated rock samples, but also provide theoretical reference for predicting the damage and deformation law of geothermal wellbore surrounding rock in deep energy storage areas, which have certain scientific and engineering practical significance.

Key words: thermal-hydro-mechanical coupling, concentric perforated granite, dynamic damage, peak load, numerical simulation, structural model

中图分类号: 

  • TU451
[1] 尹鑫晟, 舒营, 梁禄钜, 张世民, . 考虑渗流的饱和粉土地层盾构开挖面稳定分析[J]. 岩土力学, 2023, 44(7): 2005-2016.
[2] 季雨坤, 王钦科, 赵国良, 张健, 马建林, . 斜坡上嵌岩抗拔桩竖向承载变形特性模型试验及数值模拟[J]. 岩土力学, 2023, 44(6): 1604-1614.
[3] 孙彦晓, 刘松玉, 童立元, 王峻, 崔佳, 李世龙, 李敏, . 长江漫滩区明挖隧道基坑降承压水优化分析[J]. 岩土力学, 2023, 44(6): 1800-1810.
[4] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[5] 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316.
[6] 王情玉, 滕继东, 钟宇, 张升, 盛岱超, . 基于格子Boltzmann方法的饱和冻土孔隙成冰介观尺度模拟[J]. 岩土力学, 2023, 44(1): 317-326.
[7] 蒋凡, 刘华, 岳青, 杨文爽. 超大沉井基础取土下沉刃脚土压力变化规律研究[J]. 岩土力学, 2022, 43(S2): 431-442.
[8] 周昊, 陈国良, 何翔, 吴佳明, 张荣堂, 殷大伟, 袁坤彬, 武哲, . 岩土工程建筑信息模型集成与仿真关键技术研究[J]. 岩土力学, 2022, 43(S2): 443-453.
[9] 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523.
[10] 骆冠勇, 钟淼, 曹洪, 潘泓, . 砂土层中盾构掘进实测数据及数值模拟分析[J]. 岩土力学, 2022, 43(S2): 563-574.
[11] 袁维, 钟辉亚, 朱屹, 唐佳, 洪建飞, 王亚雄, 林杭, 万宁, 王安礼, . 基于数据融合的边坡临滑状态确定方法[J]. 岩土力学, 2022, 43(S2): 575-587.
[12] 丁扬, 熊晔, 陈孜孜, 吴晓寒, 王小波, . 灌注桩动力特性试验与数值模拟研究[J]. 岩土力学, 2022, 43(S2): 640-646.
[13] 阮滨, 吉瀚文, 王苏阳, 贺鸿俊, 苗雨. 基于台阵观测的基岩地震动入射波分离 方法及数值验证[J]. 岩土力学, 2022, 43(9): 2615-2623.
[14] 樊浩博, 周定坤, 刘勇, 宋玉香, 朱正国, 朱永全, 高新强, 郭佳奇, . 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学, 2022, 43(7): 1884-1898.
[15] 张革, 曹玲, 王成汤, . 考虑多晶冰软化特性的弹塑性损伤本构 模型开发及应用[J]. 岩土力学, 2022, 43(7): 1969-1977.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王光勇,顾金才,陈安敏,徐景茂,张向阳. 全长粘结式锚杆加固洞室抗爆性能试验研究[J]. , 2010, 31(1): 107 -112 .
[2] 刘维正,石名磊. 长江漫滩相软土结构性特征及其工程效应分析[J]. , 2010, 31(2): 427 -432 .
[3] 杨磊,贺为民,周杨,张清明. 深层搅拌桩复合地基的优化设计[J]. , 2010, 31(8): 2575 -2579 .
[4] 迟福东,王进廷,金 峰,汪 强. 土-结构-流体动力相互作用的实时耦联动力试验[J]. , 2010, 31(12): 3765 -3770 .
[5] 艾智勇,成志勇. 层状地基中轴向受荷单桩的边界元法分析[J]. , 2009, 30(5): 1522 -1526 .
[6] 吴振君,葛修润. 求解边坡矢量和安全系数的条分法[J]. , 2009, 30(8): 2337 -2342 .
[7] 徐海清 ,傅志峰 ,梁立刚 ,王国波 ,陈 梁. 列车荷载作用下紧邻垂直多孔隧道环境振动分析[J]. , 2011, 32(6): 1869 -1873 .
[8] 陈金刚 ,徐 平 ,张  ,李亚帮. 膨胀性充填裂隙峰前本构关系实验研究[J]. , 2011, 32(10): 2998 -3003 .
[9] 罗玉龙,吴 强,詹美礼,盛金昌. 考虑应力状态的悬挂式防渗墙-砂砾石地基管涌临界坡降试验研究[J]. , 2012, 33(S1): 73 -78 .
[10] 张智超 ,陈育民 ,刘汉龙 . 微差爆破模拟天然地震的数值分析与效果评价[J]. , 2013, 34(1): 265 -274 .