岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1837-1848.doi: 10.16285/j.rsm.2022.1053

• 数值分析 • 上一篇    下一篇

可液化倾斜场地的侧向扩展机制分析

贾科敏1,许成顺1,杜修力1,张小玲1,宋佳1, 2,苏卓林1   

  1. 1. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124;2. 北方工业大学 土木工程学院,北京 100144
  • 收稿日期:2022-07-06 接受日期:2022-10-26 出版日期:2023-06-14 发布日期:2023-06-17
  • 通讯作者: 许成顺,女,1977年生,博士,教授,博士生导师,主要从事土动力学与岩土地震工程领域的研究。E-mail: xuchengshun@bjut.edu.cn E-mail:jiakemin6@163.com
  • 作者简介:贾科敏,男,1993年生,博士研究生,主要从事土饱和砂土液化及桩基础抗震领域的研究。
  • 基金资助:
    国家自然科学基金面上项目(No.52078016);国家自然科学基金优秀青年基金(No.51722801);北京市自然科学基金面上项目(No.8192012)。

Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites

JIA Ke-min1, XU Cheng-shun1, DU Xiu-li1, ZHANG Xiao-ling1, SONG Jia1, 2, SU Zhuo-lin1   

  1. 1. Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology, Beijing 100124, China; 2. School of Civil Engineering, North China University of Technology, Beijing 100144, China
  • Received:2022-07-06 Accepted:2022-10-26 Online:2023-06-14 Published:2023-06-17
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (52078016), the National Natural Science Foundation for Outstanding Young Scholars of China (51722801) and the General Program of Beijing Natural Science Foundation (8192012).

摘要: 针对已完成的液化水平自由场大型振动台试验,采用OpenSees有限元平台,建立了振动台试验的数值分析模型,并验证了该模型的可靠性。基于此,建立了地基整体倾斜的自由场数值模型,重点讨论了场地土体的非循环地震响应和液化侧向扩展机制。结果表明,建立的数值模型可以有效地模拟可液化场地的地震反应。倾斜场地中,可液化松砂与上覆非液化层界面处具有显著的相对位移,饱和砂土的应变累积从松砂层浅层开始,逐步向深层发展,超孔隙水压力增长和土体非循环应变累积未表现出耦合的现象,场地的中部土体控制非循环横向位移的发展。另一方面,土体液化过程中,当沿滑动面的剪切应力小于初始静剪应力时,液化侧向扩展启动。此时饱和松砂层的剪应力比在0.04~0.06范围内,略小于初始静剪应力比。此外,还发现液化诱导侧向扩展需要场地具有一定的倾斜度(大于0.5º);土的侧向位移符合余弦分布模式;随着场地倾斜度的增大,可液化深层土对整体侧向位移的贡献更显著。

关键词: 液化, 侧向扩展, 自由场地, 数值模拟, 地震反应, 机制, 振动台试验

Abstract: A numerical model of the liquefaction horizontal free-field shaking table test was developed based on the completed large-scale shaking table test of liquefaction horizontal free field using the OpenSees finite element platform, and the numerical model was verified. Based on this, a free-field numerical model of the overall inclined foundation was established, and the non-cyclic dynamic response of the liquefaction lateral spreading site and the mechanism of liquefaction-induced lateral spreading were discussed. The results show that the established numerical model can effectively simulate the seismic response in liquefiable sites. There was significant relative displacement at the interface between liquefiable loose sand and overlying non-liquefiable layer. In the inclined site, the strain accumulation of saturated sand soil starts from the upper part of the loose sand layer and gradually develops downward. The increase of excess pore water pressure was not completely coupled with the accumulation of non-cyclic strain of the soil. The non-cyclic lateral displacement was controlled by the middle parts of the site. In the process of soil liquefaction, when the shear stress along the sliding surface is less than the initial static shear stress, lateral spreading starts, and the shear stress ratio of the saturated loose sand layer is in the range of 0.04−0.06, which is slightly smaller than the initial static shear stress ratio. In addition, it is found that liquefaction-induced lateral spreading requires a certain site inclination (greater than 0.5º). The lateral displacement of soil conforms to the cosine distribution pattern. With the increase of site inclination, the contribution of liquefiable deep soil to the overall lateral displacement is more significant.

Key words: liquefaction, lateral spreading, free filed, numerical simulation, seismic response, mechanism, shaking table test

中图分类号: 

  • TU411.93
[1] 杨铮涛, 秦悠, 吴琪, 陈国兴, . 循环加载频率对饱和珊瑚砂液化特性的影响[J]. 岩土力学, 2023, 44(9): 2648-2656.
[2] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[3] 乔亚飞, 闫凯, 赵腾腾, 丁文其, . 软土地区超深圆形竖井的坑底隆起特性与机制[J]. 岩土力学, 2023, 44(9): 2707-2716.
[4] 孙闯, 兰思琦, 陶琦, 关喜彬, 韩希平, . 深埋隧道软弱围岩拱顶三维渐进性塌落机制上限分析[J]. 岩土力学, 2023, 44(9): 2471-2484.
[5] 李尧, 李嘉评. 复杂初始应力状态下松砂多向循环单剪特性[J]. 岩土力学, 2023, 44(9): 2555-2565.
[6] 王志颖, 郭明珠, 曾金艳, 王晨, 刘晃. 地震作用下含软弱夹层顺层岩质斜坡 动力响应的试验研究[J]. 岩土力学, 2023, 44(9): 2566-2578.
[7] 曾召田, 崔哲旗, 孙德安, 姚志, 潘斌, . 南宁膨胀土持水性能的温度效应及微观机制[J]. 岩土力学, 2023, 44(8): 2177-2185.
[8] 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248.
[9] 王永光, 梁建文, 巴振宁, . 基于修正阻尼的土体非线性模型及其在Abaqus中的实现[J]. 岩土力学, 2023, 44(8): 2287-2296.
[10] 李文炜, 占鑫杰, 王保田, 朱群峰, 许小龙, 左晋宇, 王家辉, . 冲击碾压加固松散堰塞坝料的细观机制研究[J]. 岩土力学, 2023, 44(8): 2297-2307.
[11] 卢钦武, 关振长, 林林, 吴淑婧, 宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究[J]. 岩土力学, 2023, 44(8): 2318-2326.
[12] 张坤勇, 张梦, 孙斌, 李福东, 简永洲, . 考虑时空效应的软土狭长型深基坑地连墙变形计算方法[J]. 岩土力学, 2023, 44(8): 2389-2399.
[13] 熊超, 黄中伟, 王立超, 史怀忠, 赫文豪, 陈振良, 李根生, . 锥形聚晶金刚石复合片齿破岩特征与机制研究[J]. 岩土力学, 2023, 44(8): 2432-2444.
[14] 于洋, 王泽华, 唐才萱. 单轴压缩下酸腐蚀花岗岩能量演化与分形特征[J]. 岩土力学, 2023, 44(7): 1971-1982.
[15] 张院生, 雷云超, 强小俊, 吴东东, 王东坡, 王计华, . 多排微型桩框架结构加固边坡离心模型试验研究[J]. 岩土力学, 2023, 44(7): 1983-1994.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .