岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2555-2565.doi: 10.16285/j.rsm.2023.0432

• 基础理论与实验研究 • 上一篇    下一篇

复杂初始应力状态下松砂多向循环单剪特性

李尧1,李嘉评2   

  1. 1. 长安大学 公路学院,陕西 西安 710064;2. 青岛市政工程设计研究院,山东 青岛 266000
  • 收稿日期:2023-04-06 接受日期:2023-06-28 出版日期:2023-09-11 发布日期:2023-09-02
  • 作者简介:李尧,男,1989年生,博士,副教授,主要从事岩土工程领域的教学与科研工作。
  • 基金资助:
    国家自然科学基金项目(No.51708040)

Multi-directional cyclic simple shear behaviour of loose sand under complex initial stress states

LI Yao1, LI Jia-ping2   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Qingdao Municipal Engineering Design Research Institute, Qingdao, Shandong 266000, China
  • Received:2023-04-06 Accepted:2023-06-28 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (51708040).

摘要: 松砂极易液化,微小的应力状态变化也会影响其液化特性。基于多向循环单剪试验,采用松砂作为试验材料,开展不同静剪应力大小、方向和复杂剪切路径下的循环单剪试验,研究复杂初始应力状态下松砂循环单剪特性,得到以下主要结论:(1)随静剪应力比增大,试样剪应力峰值增大,第1个循环内孔隙水压力增量变大,试样更易液化;初始静剪应力大小对孔隙水压力的影响在剪切初期更显著。(2)随初始静剪应力和动剪应力主轴之间夹角增大,试样在X方向的剪应力峰值减小,试样孔隙水压力加速增长,在第1个循环以及最后1个循环内孔隙水压力增量变大,循环间差值增大,试样更易发生瞬时液化。(3)8字形剪切路径试样的应力−应变滞回圈面积最大,每个循环消耗能量最多,圆形剪切路径次之,直线剪切路径最小。复杂剪切路径会在剪切开始时诱发孔隙水压力的突然增加,加大各循环中孔隙水压力的增量,试样更易液化。(4)影响松砂液化因素的排序为:初始静剪应力与动剪应力夹角、剪切路径、初始静剪应力大小。

关键词: 多向循环单剪试验, 松砂, 复杂初始应力, 液化, 孔隙水压力, 应力路径, 应力反转

Abstract: Loose sand is highly susceptible to liquefaction, and small changes in stress state can affect its liquefaction characteristics. Based on multi-directional cyclic simple shear tests, this study conducted cyclic simple shear tests on loose sand under different magnitudes and directions of static shear stress, and complex shear paths. The cyclic simple shear characteristics of loose sand under complex initial stress states are studied. The main conclusions are drawn as follows: (1) As the static shear stress ratio increases, the peak shear stress of the specimen increases, the increment of pore water pressure in the first cycle increases, and the specimen is more prone to liquefaction. The effect of the magnitude of initial static shear stress on excess pore water pressure is more significant at the early stage of shearing. (2) With the increase of the angle between the initial static shear stress and the main direction of dynamic shear stress, the peak shear stress of the specimen in the X direction decreases, and the pore water pressure of the specimen accelerates to increase. In addition, the increment in pore water pressure in the first cycle and the last cycle increases, and the difference between the cycles increases. The specimen is more prone to sudden liquefaction. (3) The specimen with 8-shaped shear path has the largest area of stress−strain hysteresis loops, which consumes the most energy per cycle, followed by the specimen with the circular shear path, and the specimen with the straight shear path has the smallest area. Complex shear paths can induce a sudden increase in pore water pressure at the beginning of shearing, increasing the increment in pore water pressure in each cycle and making it more prone to liquefaction. (4) The sequence of factors affecting the liquefaction of loose sand is the angle between the initial static shear stress and the dynamic shear stress, the shear path, and the magnitude of the initial static shear stress.

Key words: multi-directional cyclic simple shear test, loose sand, complex initial stress, liquefaction, pore water pressure, stress path, stress reversal

中图分类号: 

  • TU411
[1] 杨洋, 孙锐, . 基于剪切波速的液化可能性等级评估表法[J]. 岩土力学, 2023, 44(增刊): 634-644.
[2] 杨铮涛, 秦悠, 吴琪, 陈国兴, . 循环加载频率对饱和珊瑚砂液化特性的影响[J]. 岩土力学, 2023, 44(9): 2648-2656.
[3] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[4] 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248.
[5] 赵津桥, 丁选明, 刘汉龙, 欧强, 蒋春勇, . 珊瑚砂振冲密实加固响应室内模型试验研究[J]. 岩土力学, 2023, 44(8): 2327-2336.
[6] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[7] 杨奇, 王晓雅, 聂如松, 陈琛, 陈缘正, 徐方, . 间歇循环荷载作用下饱和砂土累积塑性变形及孔压特性研究[J]. 岩土力学, 2023, 44(6): 1671-1683.
[8] 张季如, 郑颜军, 彭伟珂, 王磊, 陈敬鑫. 填土应力路径下珊瑚砂幂律应力-应变模型的适用性研究[J]. 岩土力学, 2023, 44(5): 1309-1318.
[9] 黄娟, 胡钟伟, 余俊, 李东凯. 考虑黏性的液化土中水平振动桩基桩顶阻抗研究[J]. 岩土力学, 2023, 44(5): 1445-1456.
[10] 吴宏, 叶治, 张宇亭, 刘华北, . 穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析[J]. 岩土力学, 2023, 44(4): 1204-1216.
[11] 郭景琢, 郑刚, 赵林嵩, 潘军, 张宗俊, 周强, 程雪松, . 多排孔注浆引起土体变形与孔压规律试验研究[J]. 岩土力学, 2023, 44(3): 896-907.
[12] 陈平山, 吕卫清, 梁小丛, 周红星, 王婧, 马佳钧, . 含细粒珊瑚土抗液化特性试验研究[J]. 岩土力学, 2023, 44(2): 337-344.
[13] 何文, 陈豪, 郑场松, 卢博凯, 王慢慢, . 尾矿渗透破坏及其导波监测试验研究[J]. 岩土力学, 2023, 44(2): 415-424.
[14] 舒荣军, 孔令伟, 周振华, 简涛, 李甜果, . 卸荷-增孔压条件下花岗岩残积土的力学特性[J]. 岩土力学, 2023, 44(2): 473-482.
[15] 梁小丛, 陈平山, 刘志军, 王永志, 朱明星, . 离心机振动台模型试验验证的珊瑚礁砂液化判别方法研究[J]. 岩土力学, 2023, 44(11): 3173-3181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .