岩土力学 ›› 2023, Vol. 44 ›› Issue (4): 1204-1216.doi: 10.16285/j.rsm.2022.0741

• 数值分析 • 上一篇    下一篇

穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析

吴宏1,叶治1,张宇亭2,刘华北1   

  1. 1. 华中科技大学 土木与水利工程学院,湖北 武汉 430074;2. 交通运输部天津水运工程科学研究所 岩土工程研究中心,天津 300456
  • 收稿日期:2022-05-18 接受日期:2022-09-08 出版日期:2023-04-18 发布日期:2023-04-29
  • 通讯作者: 刘华北,男,1973年生,博士,教授,主要从事土工合成材料加筋技术、土工结构抗震等工作。E-mail: hbliu@hust.edu.cn E-mail:wuhong.phd@gmail.com
  • 作者简介:吴宏,男,1993年生,博士研究生,主要从事地下结构抗震的研究工作
  • 基金资助:
    国家自然科学基金(No.51978305);中央级公益性科研院所基本科研业务费专项资金(No.TKS20220107)。

Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities

WU Hong1, YE Zhi1, ZHANG Yu-ting2, LIU Hua-bei1   

  1. 1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 2. Geotechnical Engineering Research Center, Tianjin Research Institute for Water Transport Engineering, of Ministry of Transport, Tianjin 300456, China
  • Received:2022-05-18 Accepted:2022-09-08 Online:2023-04-18 Published:2023-04-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978305) and the Fundamental Research Funds for the Central Public Welfare Research Institutes (TKS20220107).

摘要: 地震液化对隧道结构有重大威胁,且位于不同抗液化能力地层交界处的盾构隧道段更易发生严重的地震破坏。采用三维数值方法研究穿越不同密实度状态饱和砂土地层的盾构隧道的地震响应规律。饱和砂土用一种描述不同密实度砂土液化行为的边界面模型进行模拟,首先通过隧道液化上浮的振动台试验结果验证该本构模型的合理性。其次,应用多自由度连接弹簧表征管片环间相互作用,采用文献中的拼装管片的逐级加载试验结果验证该方法的可行性。最后,建立穿越两种不同密实度饱和砂土地层的盾构隧道三维数值模型,研究相对密实度、输入加速度峰值和交界面倾角对砂土地层−盾构隧道系统动力响应的影响。结果表明,可液化地层中隧道结构位移模式是水平地震激励下产生的水平位移与由于液化上浮效应产生的竖向位移的耦合作用,加之隧道在不同土层中变形存在差异,从而导致隧道呈现扭转的变形形态。在靠近交界面处,隧道整体上浮量急剧变化且该处结构上浮量随着交界面倾角增大而增大,同时管片结构弯矩出现突变,接头螺栓的环间剪切和拉伸位移也显著增加。分析结果进一步印证地震作用下盾构隧道在不同性质饱和砂土地层交界面处更易破坏,在设计阶段应予以重点关注。

关键词: 饱和土层交界, 盾构隧道, 地震响应, 变形模式, 砂土液化

Abstract: Earthquake-induced liquefaction poses a significant threat to tunnel structures. Particularly, shield tunnel crossing sandy stratums with different liquefaction susceptibilities could suffer more severe seismic damages near the soil interface. In this paper, a three-dimensional numerical study was carried out to investigate the seismic response of a shield tunnel passing through saturated sandy strata with two different relative densities. Firstly, a practice-oriented two-surface plasticity sand model was employed to model the sandy soil and was validated by shaking table experiments on a tunnel structure embedded in liquefiable soil. Secondly, a deformable force-displacement link model for circumferential joints between each successive segmental ring was employed to model the interactions between segmental rings. The approach was validated using the results of two loading experiments on model segmental linings from the literature. Finally, the 3D numerical model was established considering various relative densities of soil, peak input accelerations, and the dip angle of the interface. The results indicate that the tunnel’s horizontal displacements due to seismic excitations are coupled with the liquefaction-induced vertical uplift displacements, and the tunnel’s deformation is not simultaneous in the two soil strata, resulting in twisting distortion of the tunnel structure. The uplifts of tunnel change rapidly and are increased by the rising of the dip angle near the soil interface. Also, the bending moments suddenly change, and the shearing/tensile displacements of joints increase remarkably, which confirms that the seismic design of shield tunnel segments near the soil interface is a critical issue.

Key words: saturated soil interface, shield tunnel, earthquake responses, deformation mode, soil liquefaction

中图分类号: 

  • TU43
[1] 申辉, 刘亚群, 刘博, 李海波, . 地震波斜入射下岩质边坡放大效应的数值模拟研究[J]. 岩土力学, 2023, 44(7): 2129-2142.
[2] 张治国, 叶铜, 朱正国, PAN Y T, 吴钟腾, . 波浪作用下含气海床内盾构隧道水力及位移响应分析[J]. 岩土力学, 2023, 44(6): 1557-1574.
[3] 钟小春, 黄思远, 槐荣国, 朱诚, 胡一康, 陈旭泉, . 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624.
[4] 王祖贤, 施成华, 龚琛杰, 曹成勇, 彭铸, 孙影杰, . 考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型[J]. 岩土力学, 2023, 44(5): 1295-1308.
[5] 刘勇, 周怡晟, 索晓明, 樊浩博, 曹毅泽, 杜志田, . 盾构下穿高铁路基变形规律模型试验研究[J]. 岩土力学, 2023, 44(4): 941-951.
[6] 郑长杰, 崔亦秦, 吴琛, 罗通, 栾鲁宝, . 竖向入射S波作用下单桩水平地震响应简化解析方法[J]. 岩土力学, 2023, 44(2): 327-336.
[7] 张志伟, 梁荣柱, 李忠超, 孙廉威, 沈雯, 吴文兵, . 盾尾非对称推力作用下盾构隧道纵向变形分析[J]. 岩土力学, 2023, 44(1): 88-98.
[8] 王维铭, 陈龙伟, 郭婷婷, 汪云龙, 凌贤长, . 基于中国砂土液化数据库的标准贯入试验液化 判别方法研究[J]. 岩土力学, 2023, 44(1): 279-288.
[9] 胡垚, 雷华阳, 雷峥, 刘英男, . 三向地震作用下叠交隧道地震响应振动台试验研究[J]. 岩土力学, 2022, 43(S2): 104-116.
[10] 黎春林. 盾构开挖面三维曲面体破坏模型 及支护力计算方法研究[J]. 岩土力学, 2022, 43(8): 2092-2102.
[11] 王祖贤, 施成华, 龚琛杰, 曹成勇, 刘建文, 彭铸, . 邻近车站(工作井)基坑开挖对下卧 盾构隧道影响的解析计算方法[J]. 岩土力学, 2022, 43(8): 2176-2190.
[12] 杨建平, 王琛, 黄煜诚, 秦川, 陈卫忠, . 水下盾构隧道运营期管片应变增量变化规律研究[J]. 岩土力学, 2022, 43(8): 2253-2262.
[13] 张治国, 叶铜, 张成平, PAN Y T, 吴钟腾, . Stokes二阶波作用下斜坡海床中盾构隧道周围 砂土渗流压力响应分析[J]. 岩土力学, 2022, 43(6): 1635-1659.
[14] 安军海, 陶连金, 蒋录珍, . 盾构扩挖地铁车站结构地震反应特性振动台试验[J]. 岩土力学, 2022, 43(5): 1277-1288.
[15] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖衡林,余天庆. 山区挡土墙土压力的现场试验研究[J]. , 2009, 30(12): 3771 -3775 .
[2] 江洎洧,项 伟,唐辉明,曾 斌,黄 玲. 极限蓄水位下洞坪水库大沟湾滑坡稳定性预测[J]. , 2010, 31(3): 805 -810 .
[3] 卢 正,姚海林,刘干斌,骆行文. 简谐线源荷载作用下热流固耦合地基的动力响应[J]. , 2010, 31(7): 2309 -2316 .
[4] 赵明华,孙建兵,张永杰. 基于Winkler模型的双向增强体复合地基沉降计算[J]. , 2010, 31(11): 3459 -3463 .
[5] 杨玉贵,赖远明,李双洋,董元宏. 冻结粉土三轴压缩变形破坏与能量特征分析[J]. , 2010, 31(11): 3505 -3510 .
[6] 崔皓东,张家发,张 伟,王金龙. 南水北调中线典型承压水地层渠段渗流场数值分析[J]. , 2010, 31(S2): 447 -451 .
[7] 付 伟,汪 稔,胡明鉴,向焱红. 不同温度下冻土单轴抗压强度与电阻率关系研究[J]. , 2009, 30(1): 73 -78 .
[8] 孙富学,蔡晓鸿,朱云辉. 基于初参数法的多心圆拱隧道衬砌结构内力与变位求解[J]. , 2009, 30(4): 1127 -1130 .
[9] 李守巨,刘迎曦,于 贺. 多孔材料等效导热系数与分形维数关系的数值模拟研究[J]. , 2009, 30(5): 1465 -1470 .
[10] 胡 昕,洪宝宁,杜 强,孟云梅. 含水率对煤系土抗剪强度的影响[J]. , 2009, 30(8): 2291 -2294 .