岩土力学 ›› 2022, Vol. 43 ›› Issue (8): 2176-2190.doi: 10.16285/j.rsm.2021.2108

• 基础理论与实验研究 • 上一篇    下一篇

邻近车站(工作井)基坑开挖对下卧 盾构隧道影响的解析计算方法

王祖贤1,施成华1,龚琛杰1,曹成勇2,刘建文1,彭铸1   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 深圳大学 土木与交通工程学院,广东 深圳 518060
  • 收稿日期:2021-11-28 修回日期:2022-06-24 出版日期:2022-08-11 发布日期:2022-08-17
  • 通讯作者: 龚琛杰,男,1990年生,博士,副教授,主要从事盾构隧道结构安全方面的教学和科研工作。E-mail: gongcj@csu.edu.cn E-mail:csusdwzx@csu.edu.cn
  • 作者简介:王祖贤,男,1994年生,博士研究生,主要从事隧道与地下工程方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51908557,No. 51778636);湖南省自然科学基金(No. 2021JJ30837)。

Analytical method to estimate the influence of foundation pit excavation adjacent to the station (working shaft) on the underlying shield tunnel

WANG Zu-xian1, SHI Cheng-hua1, GONG Chen-jie1, CAO Cheng-yong2, LIU Jian-wen1, PENG Zhu1   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • Received:2021-11-28 Revised:2022-06-24 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51908557, 51778636) and the Natural Science Foundation of Hunan Province (2021JJ30837).

摘要:

既有用于基坑开挖引起下卧盾构隧道纵向变形计算的解析模型,往往将盾构隧道视为两端自由的无限长梁,限制了此类模型的适用范围。针对邻近车站(工作井)基坑开挖引起下卧盾构隧道纵向变形问题,将车站(工作井)―隧道连接节点对盾构隧道的约束视为一转动刚度为 Kθ 的旋转弹簧和一竖向链杆,建立了开挖卸荷作用下邻近车站(工作井)盾构隧道纵向变形分析的Winkler地基 - Timoshenko 梁模型,基于力法基本原理严格推导了解析模型的差分解。通过与一维弹性地基梁有限元数值解和邻近车站基坑开挖诱发下卧盾构隧道纵向变形的整体有限元计算结果的对比,验证了解析模型的可靠性和适用性。进一步的参数分析结果表明:车站(工作井)―隧道连接节点转动刚度 Kθ 对隧道纵向变形和内力具有显著影响,连接端处隧道内力随 Kθ的增大而非线性增大,而隧道横截面转角的变化却恰好相反,且车站(工作井)-隧道连接节点采用柔性连接时能更好地保障此节点处盾构隧道的工作性能;当基坑中心距车站-隧道连接节点的距离在4~5倍的基坑宽度(沿隧道轴向)范围内时,连接节点对隧道端部的约束效应不可忽略,应采用该模型进行盾构隧道纵向性能评价;上覆基坑开挖对下卧盾构隧道的影响主要集中在自基坑中心2倍基坑长度(横隧道轴向)以内。

关键词: 盾构隧道, 基坑开挖, 柔性边界, 纵向变形, 解析解

Abstract:

The shield tunnel is typically simplified as an infinite beam with two free ends in existing analytical models, which are used to calculate the longitudinal deformation of the underlying shield tunnel induced by the excavation of a foundation pit. However, the applicability of those analytical models is limited due to the simplification. The current study is aimed at estimating analytically the longitudinal deformation of the underlying shield tunnel induced by the excavation of a foundation pit adjacent to the station (working shaft). The constraint on the shield tunnel generated by the joint between the station (working shaft) and the tunnel is treated as a rotation spring with the rotation stiffness of  Kθ  and a vertical rod support. The Winkler foundation – Timoshenko beam model for calculating the longitudinal deformation of the shield tunnel adjacent to the station (working shaft) induced by the foundation pit excavation is proposed. The finite difference solution of the proposed model is strictly derived based on the basic principles of the force method. The reliability and applicability of the proposed analytical model are verified via the comparison with the finite element numerical solution of one-dimensional elastic foundation beam model and the global finite element simulation results of the longitudinal deformation of the underlying tunnel induced by the excavation of a foundation pit adjacent to the station. The parametric studies indicate the following conclusions. (i) The longitudinal deformation and internal forces of the shield tunnel are significantly influenced by the rotation stiffness, Kθ , of the joint between the station (working shaft) and the tunnel. The internal forces and the longitudinal deformation (i.e. rotation angle) at the end of the tunnel increase and decreases nonlinearly with a increasing  Kθ , respectively. In addition, when the flexible connection is adopted at the joint between the station (working well) and tunnel, the working performance of the shield tunnel at the joint can be better guaranteed. (ii) The constraint effect of the joint on the end of the tunnel is non-negligible, when the distance from the center of the foundation pit to the station-tunnel joint ranges from 4 to 5 times the width of the pit along the tunnel axis. In this condition, the proposed analytical model should be adopted to evaluate the longitudinal working performance of the tunnel. (iii) The influence of the overlying foundation pit excavation on the underlying tunnel mainly exerts within 2 times the length of the pit perpendicular to the tunnel axis away from the center of the pit.

Key words: shield tunnel, foundation pit excavation, flexible boundary, longitudinal deformation, analytical solution

中图分类号: 

  • TU 43
[1] 秦爱芳, 孟红苹, 江良华. 电渗−堆载作用下非饱和土轴对称固结特性分析[J]. 岩土力学, 2022, 43(S1): 97-106.
[2] 汪磊, 张立婷, 沈思东, 徐永福, 夏小和. 分段循环荷载作用下非饱和土轴对称固结特性研究[J]. 岩土力学, 2022, 43(S1): 203-212.
[3] 翟张辉, 张亚国, 李同录, 肖书雄, . 考虑边界效应的非饱和土圆柱孔扩张问题解析[J]. 岩土力学, 2022, 43(S1): 301-311.
[4] 黎春林. 盾构开挖面三维曲面体破坏模型 及支护力计算方法研究[J]. 岩土力学, 2022, 43(8): 2092-2102.
[5] 杨建平, 王琛, 黄煜诚, 秦川, 陈卫忠, . 水下盾构隧道运营期管片应变增量变化规律研究[J]. 岩土力学, 2022, 43(8): 2253-2262.
[6] 张治国, 叶铜, 张成平, PAN Y T, 吴钟腾, . Stokes二阶波作用下斜坡海床中盾构隧道周围 砂土渗流压力响应分析[J]. 岩土力学, 2022, 43(6): 1635-1659.
[7] 杨涛, 吉映竹, . 变荷载下长排水体-短不排水桩 复合地基固结解析解[J]. 岩土力学, 2022, 43(5): 1187-1196.
[8] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
[9] 李镜培, 刘耕云, 周攀, . 基于相似性原理超固结土不排水扩张半解析解[J]. 岩土力学, 2022, 43(3): 582-590.
[10] 刘维正, 戴晓亚, 孙康, 艾国平, 雷涛. 地铁盾构隧道近距离上穿既有线路 纵向变形计算方法[J]. 岩土力学, 2022, 43(3): 831-842.
[11] 邱金伟, 权全, 刘军, 童军, 胡波, . 考虑非等温环境下污染物在黏土中的运移解析模型[J]. 岩土力学, 2022, 43(2): 423-431.
[12] 赵爽, 余俊, 刘新源, 胡钟伟. 悬臂式刚性墙动力响应解析研究[J]. 岩土力学, 2022, 43(1): 152-159.
[13] 王祖贤, 施成华, 刘建文. 非对称推力作用下盾构隧道附加响应的解析解[J]. 岩土力学, 2021, 42(9): 2449-2460.
[14] 卢一为, 丁选明, 刘汉龙, 郑长杰, . 均匀黏弹性地基中X形桩纵向振动 响应简化解析方法[J]. 岩土力学, 2021, 42(9): 2472-2479.
[15] 仇超, 李传勋, 李红军, . 单级等速加载下高压缩性软土 非线性大应变固结解析解[J]. 岩土力学, 2021, 42(8): 2195-2206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .