岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2566-2578.doi: 10.16285/j.rsm.2022.1642

• 基础理论与实验研究 • 上一篇    下一篇

地震作用下含软弱夹层顺层岩质斜坡 动力响应的试验研究

王志颖1,郭明珠1,曾金艳2,王晨1,刘晃1   

  1. 1. 北京工业大学 城市建设学部,北京 100124;2. 山西省地震局,山西 太原 030021
  • 收稿日期:2022-10-20 接受日期:2023-02-07 出版日期:2023-09-11 发布日期:2023-09-02
  • 通讯作者: 曾金艳,女,1970年生,硕士,高级工程师,主要从事边坡工程、活动构造、地震工程和地球物理勘探研究工作。E-mail: 13903412202@163.com E-mail:wangzhiying@emails.bjut.edu.cn
  • 作者简介:王志颖,男,1996年生,硕士研究生,主要从事斜坡地震动力响应相关的研究工作。
  • 基金资助:
    国家重点研发计划资助项目(No.2018YFC1505001)。

Experimental study on dynamic response of bedding rock slope with weak interlayer under earthquake

WANG Zhi-ying1, GUO Ming-zhu1, ZENG Jin-yan2, WANG Chen1, LIU Huang1   

  1. 1. Department of Urban Construction, Beijing University of Technology, Beijing 100124, China; 2. Earthquake Administration of Shanxi Province, Taiyuan, Shanxi 030021, China
  • Received:2022-10-20 Accepted:2023-02-07 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2018YFC1505001).

摘要: 以青藏高原金沙江流域下归洼滑坡为原型,开展了含软弱夹层的顺层岩质斜坡振动台模型试验,基于斜坡峰值加速度PGA的放大系数和Hibert-Huang变换(Hibert-Huang transform,简称HHT)时频特征分析地震作用下含软弱夹层顺层岩质斜坡动力响应规律。试验结果表明:斜坡在地震作用下表现出明显“高程效应”和“趋表效应”,PGA在坡表距离坡底1/4高度处、坡顶、软弱夹层处较大。随着输入地震动强度的增加,斜坡刚度逐渐降低,自振频率逐渐减小。当输入波幅值达到0.7g之后,斜坡发生开裂和结构变形。输入波幅值相同的情况下,PGA放大系数与高程呈正相关,同一测点随着输入波幅值增加,放大系数逐渐下降,不同输入波的类型和时间压缩比对斜坡动力响应影响差异较大。Hilbert谱显示,高程和软弱夹层对地震波能量有放大作用,高频部分的能量放大尤其明显。Hilbert边际谱表明,软夹层作用下高频部分的累积能量放大明显,在坡表距离坡底1/4高度处的测点能量突然增大,与加速度放大效应部分的结论类似;Hilbert边际谱显示,随着输入地震波幅值增加,高频部分和代表斜坡自振频率部分的累积能量逐渐降低,输入地震波主频部分的累积能量逐渐占据主导地位,表明斜坡逐渐损伤破坏,斜坡的模态特性逐渐消失。

关键词: 振动台试验, 边坡工程, 顺层岩质斜坡, 软弱夹层, 动力响应, HHT时频分析

Abstract: In this study, the “Xiaguiwa” landslide in Jinsha River Basin of Qinghai-Tibet Plateau is taken as a prototype, and the shaking table model test on bedding rock slope with weak interlayer is carried out. The dynamic response of bedding rock slope with weak interlayer under earthquake is studied from the aspects of peak ground acceleration (PGA) amplification factor and Hibert-Huang transform (HHT) time-frequency characteristics. The results show that the slope exhibits obvious “elevation effect” and “surface effect” under the action of input seismic waves. The PGA is larger at the 1/4 height of the slope surface from the bottom of the slope, the top of the slope, and the weak interlayer. With the increase of the intensity of the input seismic waves, the slope stiffness and natural vibration frequency decrease gradually. When the input wave amplitude reaches 0.7g, the slope cracking and structural deformation occur. When the input amplitudes are the same, the PGA amplification coefficient is positively correlated with the elevation, and decreases gradually with the increase of the input amplitudes at the same measuring point. The influences of different input wave types and time scale factors on the slope dynamic response are significantly different. The Hilbert spectrum shows that the elevation and weak interlayer amplify the energy of seismic waves, especially the high-frequency part. The Hilbert marginal spectrum shows that the weak interlayer could amplify the energy of the high-frequency part. The Hilbert marginal spectrum indicates that the cumulative energy of the high-frequency part is significantly amplified under the influence of soft interlayer, and the energy of the measuring point at the 1/4 height of the slope surface from the bottom of the slope suddenly increases, which is similar to the conclusion of the acceleration amplification effect. The results of Hilbert marginal spectrum shows that with the increase of the amplitude of the input seismic wave, the cumulative energy of the high-frequency part and the part representing the natural vibration frequency of the slope gradually decrease, and the energy of the main frequency part of the input seismic wave gradually dominates, indicating that the modal characteristics of the slope gradually disappear.

Key words: shaking table tests, slope engineering, bedding rock slope, weak interlayer, dynamic response, HHT time-frequency analysis

中图分类号: 

  • TU435
[1] 冯海洲, 蒋关鲁, 何梓雷, 郭玉丰, 胡金山, 李杰, 袁胜洋, . 预应力锚索桩板墙加固隧道洞口边坡的动力响应特性研究[J]. 岩土力学, 2023, 44(增刊): 50-62.
[2] 李小信, 何超, 周顺华, 李晖, . 具有不规则界面的层状地基三维动力响应的薄层法[J]. 岩土力学, 2023, 44(增刊): 655-668.
[3] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[4] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[5] 张硕成, 陈文化. 考虑不均匀冻胀土体-衬砌隧道在寒区的振动响应[J]. 岩土力学, 2023, 44(5): 1467-1476.
[6] 王丽艳, 吉文炜, 陶云翔, 唐跃, 王炳辉, 蔡晓光, 张雷, . 格栅条带式加筋废旧轮胎胎面挡土墙 抗震性能试验研究[J]. 岩土力学, 2023, 44(4): 931-940.
[7] 张聪, 冯忠居, 王富春, 孔元元, 王溪清, 马晓谦, . 强震区软弱土层差异厚度下单桩动力响应振动台试验[J]. 岩土力学, 2023, 44(4): 1100-1110.
[8] 刘新荣, 郭雪岩, 许彬, 周小涵, 曾夕, 谢应坤, 王䶮, . 含消落带劣化岩体的危岩边坡动力累积损伤机制研究[J]. 岩土力学, 2023, 44(3): 637-648.
[9] 闫志晓, 李雨润, 王东升, 王永志, . 覆水砂土场地中桥梁群桩基础地震响应离心试验研究[J]. 岩土力学, 2023, 44(3): 861-872.
[10] 许明, 余小越, 赵元平, 胡家驹, 张潇婷, . 顺倾层状碎裂结构岩质边坡地震动力响应及破坏模式分析[J]. 岩土力学, 2023, 44(2): 362-372.
[11] 胡垚, 雷华阳, 雷峥, 刘英男, . 三向地震作用下叠交隧道地震响应振动台试验研究[J]. 岩土力学, 2022, 43(S2): 104-116.
[12] 刘斯宏, 李博文, 鲁洋, 沈超敏, 方斌昕, 杭丹, . 土工袋垫层抗液化性能振动台试验研究[J]. 岩土力学, 2022, 43(S2): 183-192.
[13] 郑森, 李伟华, 崔杰, 李亚东, . 刚度可调层状多向剪切模型箱的研制及性能测试[J]. 岩土力学, 2022, 43(S2): 616-625.
[14] 景立平, 吴凡, 李嘉瑞, 汪刚, 齐文浩, 周中一, . 土−桩基−隔震支座−核岛地震反应试验研究[J]. 岩土力学, 2022, 43(9): 2483-2492.
[15] 郑长杰, 何育泽, 丁选明, 栾鲁宝, 陈业伟, . 下卧基岩黏弹性地基上刚性条形基础 竖向振动响应研究[J]. 岩土力学, 2022, 43(6): 1434-1440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .