岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2713-2721.doi: 10.16285/j.rsm.2021.0285

• 基础理论与实验研究 • 上一篇    下一篇

聚丙烯纤维加筋砾质黏土的拉伸断裂特性研究

张志韬1, 2,陈生水1, 2,吉恩跃1, 2,傅中志1, 2   

  1. 1. 南京水利科学研究院岩土工程研究所,江苏 南京 210024;2. 南京水利科学研究院 水利部水库大坝安全重点实验室,江苏 南京 210024
  • 收稿日期:2021-02-26 修回日期:2021-06-23 出版日期:2021-10-11 发布日期:2021-10-18
  • 通讯作者: 吉恩跃,男,1989年生,博士(后),高级工程师,主要从事土石坝工程筑坝料基本性质及数值模拟研究。E-mail: eyji@nhri.cn E-mail:ztzhang@nhri.cn
  • 作者简介:张志韬,男,1994年生,博士研究生,主要从事土石坝试验技术方面的研究工作
  • 基金资助:
    国家自然科学基金(No. 51809182);长江水利委员会长江科学院开放研究基金(No. CKWV2019747/KY)。

Tensile fracture properties of gravelly soil reinforced by polypropylene fiber

ZHANG Zhi-tao1, 2, CHEN Sheng-shui1, 2, JI En-yue1, 2, FU Zhong-zhi1, 2   

  1. 1. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210024, China; 2. Key Laboratory of Reservoir Dam Safety of the Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210024, China
  • Received:2021-02-26 Revised:2021-06-23 Online:2021-10-11 Published:2021-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51809182) and the Open Research Fund of the Changjiang River Scientiffic Research Institute (CKWV2019747/KY).

摘要: 自主研发了一种用于土体拉伸试验的新型拉伸装置,针对不同砾石含量、不同纤维含量的砾质黏土开展了多组拉伸试验。由试验结果发现,砾质黏土的抗拉强度随着砾石含量的增大而降低,在砾质黏土中掺入聚丙烯纤维后,其抗拉强度和极限拉应变明显增大;纤维加筋砾质黏土的抗拉强度和极限拉应变与其中的纤维含量呈正相关关系,但随着砾质黏土中砾石含量的增大,纤维的掺入对其抗拉强度的提升作用明显降低。电镜扫描分析表明,纤维与土颗粒界面产生的摩擦作用是导致加筋砾质黏土抗拉强度提高的主要原因,砾石含量为0%的纯黏土试样,因仅存在纤维/土颗粒界面的I类纤维,土体的抗拉强度提高非常明显;随着砾石含量增大,纤维/土颗粒/砾石界面II类纤维的占比增加,纤维的掺入对其抗拉强度的提升作用明显降低。最后,基于60个试样的试验结果,提出了一个纤维加筋砾质黏土的抗拉强度的多元回归模型,可快速预测不同砾石含量和纤维含量下砾质黏土的抗拉强度。相关试验结果可为高土质心墙坝防渗心墙的抗裂设计提供参考。

关键词: 砾质黏土, 聚丙烯纤维, 抗拉强度, 极限拉应变, 微观机制

Abstract: A series of tensile tests was conducted on gravelly soil based on a new self-developed soil tensile device. The different gravel contents and fiber contents were considered in the test. It is found that the tensile strength of gravelly soil decreases with the increase of gravel content, and the tensile strength and ultimate tensile strain of gravelly soil increases significantly after polypropylene fiber is added. The tensile strength and ultimate tensile strain of fiber-reinforced gravelly soil are positively correlated with the fiber content. However, as the gravel content in the gravelly soil increases, the effect of fiber incorporation on its tensile strength is significantly reduced. Scanning electron microscope analysis shows that the friction of interface between the fiber and the soil particle is the main reason for the increase of the tensile strength of the fiber-reinforced gravelly soil. For the pure clay specimen with a gravel content of 0%, the tensile strength of the soil is dramatically improved because there are only type-I fibers at the fiber/soil particle interface. As the gravel content increases, the proportion of type-II fibers at the fiber/soil particle/gravel interface increases, and the effect of fiber incorporation on the improvement of its tensile strength is markedly reduced. Finally, based on the test results of 60 specimens, a multivariate regression model for the tensile strength of fiber-reinforced gravelly soil is proposed, which can quickly predict the tensile strength of gravelly soil with different gravel contents and fiber contents. The test results can provide references for the anti-cracking design of core wall of high earth core wall dams.

Key words: gravelly soil, polypropylene fiber, tensile strength, ultimate tensile strain, microscopic mechanism

中图分类号: 

  • TU 411
[1] 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126.
[2] 安宁, 晏长根, 王亚冲, 兰恒星, 包含, 许江波, 石玉玲, 孙巍锋, . 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501-510.
[3] 王东星, 陈政光, . 氯氧镁水泥固化淤泥力学特性及微观机制[J]. 岩土力学, 2021, 42(1): 77-85.
[4] 李二强, 张洪昌, 张龙飞, 朱天宇, 路景淦, 冯吉利, . 不同层理倾角炭质板岩巴西劈裂 试验及数值研究[J]. 岩土力学, 2020, 41(9): 2869-2879.
[5] 张茂础, 盛谦, 崔臻, 马亚丽娜, 周光新. 岩石材料抗拉强度与劈裂节理面形貌的 加载速率效应研究[J]. 岩土力学, 2020, 41(4): 1169-1178.
[6] 刘杰, 李运舟, 杨渝南, 李洪亚, 孙涛, 李政, . 自膨胀锚杆锚固体膨胀剂极限掺量确定方法研究[J]. 岩土力学, 2020, 41(10): 3266-3278.
[7] 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308.
[8] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[9] 王东星, 肖 杰, 肖衡林, 马 强, . 武汉东湖淤泥碳化-固化试验研究[J]. 岩土力学, 2019, 40(5): 1805-1812.
[10] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[11] 查甫生, 刘晶晶, 许龙, 邓永锋, 杨成斌, 储诚富, . 水泥−粉煤灰固化/稳定重金属污染土的电阻率 特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580.
[12] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[13] 高桂云,王成虎,王春权,. 双圆环直接拉伸试验试样最优尺寸范围研究[J]. , 2018, 39(S1): 191-202.
[14] 刘松玉,曹菁菁,蔡光华, . 活性氧化镁碳化固化粉质黏土微观机制[J]. , 2018, 39(5): 1543-1552.
[15] 王闵闵,鹿 群,郭少龙,高 萌,沈仲涛,. 循环荷载作用下纤维水泥土动力特性[J]. , 2018, 39(5): 1753-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950 -1955 .
[3] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[4] 高树生,钱根宝,王 彬,杨作明,刘华勋. 新疆火山岩双重介质气藏供排气机理数值模拟研究[J]. , 2011, 32(1): 276 -280 .
[5] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811 -814 .
[6] 孙德安,孟德林,孙文静,刘月妙. 两种膨润土的土-水特征曲线[J]. , 2011, 32(4): 973 -0978 .
[7] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[8] 褚福永 ,朱俊高 ,贾 华 ,安淑红. 粗粒土卸载-再加载力学特性试验研究[J]. , 2012, 33(4): 1061 -1066 .
[9] 卢 强,王占江,李 进,郭志昀,门朝举. 球面波加载下黄土线黏弹性本构关系[J]. , 2012, 33(11): 3292 -3298 .
[10] 王 苏,路德春,杜修力. 地下结构地震破坏静-动力耦合模拟研究[J]. , 2012, 33(11): 3483 -3488 .