岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1805-1812.doi: 10.16285/j.rsm.2018.0137

• 基础理论与实验研究 • 上一篇    下一篇

武汉东湖淤泥碳化-固化试验研究

王东星1, 2,肖 杰1,肖衡林3,马 强3   

  1. 1. 武汉大学 土木建筑工程学院,湖北 武汉 430072;2. 天津城建大学 天津市软土特性与工程环境重点实验室,天津 300381; 3. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430072
  • 收稿日期:2018-01-22 出版日期:2019-05-11 发布日期:2019-06-02
  • 通讯作者: 肖杰,男,1994年生,硕士研究生,主要从事淤泥固化等环境岩土工程研究工作。E-mail:jie-xiao@whu.edu.cn E-mail:dongxing-wang@whu.edu.cn
  • 作者简介:王东星,男,1984年生,博士(后),副教授,硕士生导师,主要从事淤泥固化和软基处理等环境岩土工程教学和研究工作
  • 基金资助:
    国家自然科学基金(No.51879202, No.51609180)

Experimental study of carbonated-solidified sludge in East Lake, Wuhan

WANG Dong-xing1, 2, XIAO Jie1, XIAO Heng-lin3, MA Qiang3   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Soft Soil Engineering Character and Engineering Environment of Tianjin, Tianjin Chengjian University, Tianjin 300381, China; 3. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430072, China
  • Received:2018-01-22 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51879202, 51609180).

摘要: 引入活性MgO-粉煤灰固化材料,采用碳化-固化联合技术处理武汉东湖疏浚淤泥,通过无侧限抗压强度、扫描电镜和压汞试验,研究加压碳化模式、碳化时间、MgO-粉煤灰配比和固化剂掺量等因素下CO2碳化作用对固化淤泥力学性质和微观结构的影响。结果表明:活性MgO-粉煤灰固化淤泥碳化后抗压强度进一步增长,应力-应变关系曲线压密阶段应变缩小;不同固化剂配比的东湖淤泥试样具有不同的最佳加压模式,而加压模式决定了相同碳化时间下固化淤泥CO2吸入量,从而影响碳化-固化淤泥试样抗压强度;活性MgO掺量低时试样抗压强度整体较低,强度随碳化时间增加先增大后减小;MgO掺量较高时,碳化试样强度随碳化时间快速达到较高值,随后增长缓慢。微观分析表明:水碳镁石、球碳镁石和碳酸镁石等镁碳酸盐是碳化-固化联合技术增强淤泥强度的主要原因,其膨胀性和胶结作用促使土体中团粒内孔隙向颗粒间孔隙转化,土体更密实,抗压强度增加。

关键词: 疏浚淤泥, 活性MgO-粉煤灰, 碳化-固化, 抗压强度, 微观机制

Abstract: The reactive MgO-fly ash cementing materials were innovatively introduced into the improvement of dredged sludge from East Lake, Wuhan by the combined technology of carbonation-solidification. Through unconfined compression strength, scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests, the effect of CO2 carbonation on the mechanical properties and microstructure was investigated under different carbonation modes, carbonation time, ratios of MgO to fly ash and dosages of binding agent. The results indicate that the strength of solidified sludge is evidently increased due to carbonation, accompanied by a narrowed compaction stage of stress-strain curve. The sludge specimens with different binding agents have different optimal pressurization modes, which determines the CO2 intake amount of solidified sludge for the same carbonation period, and affects the strength gain of carbonated samples. Low amount of reactive MgO leads to relatively low compressive strength, which firstly increases and then decreases as the carbonation time increases. The strength of carbonated sludge with relatively high amount of reactive MgO reaches rapidly certain higher value with carbonation time and then increases slowly. The microscopic experiments demonstrated that the formation of magnesium carbonate (e.g. hydromagnesite, dypingite and nesquehonite) is the main reason for enhancing the compressive strength of specimens by the combined carbonation-solidification technology. The expansibility and cementation of the magnesium carbonate promote the transformation of pore in aggregates into inter-granular pore, which makes the soil more compact and increases its compressive strength of carbonated-solidified sludge.

Key words: dredged sludge, reactive magnesia-fly ash, carbonation-solidification, compressive strength, micro-mechanism

中图分类号: 

  • TU 443
[1] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[2] 高运昌, 高盟, 尹诗, . 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(S1): 231-236.
[3] 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308.
[4] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[5] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[6] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[7] 王 琦, 孙会彬, 江 贝, 高 松, 李术才, 高红科, . 基于数字钻探和支持向量机预测岩体 单轴抗压强度的方法[J]. 岩土力学, 2019, 40(3): 1221-1228.
[8] 查甫生, 刘晶晶, 许龙, 邓永锋, 杨成斌, 储诚富, . 水泥−粉煤灰固化/稳定重金属污染土的电阻率 特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580.
[9] 王东星, 王宏伟, 邹维列, 徐学勇, . 活性MgO−粉煤灰固化淤泥耐久性研究[J]. 岩土力学, 2019, 40(12): 4675-4684.
[10] 杨爱武, 胡垚, 杨少坤, . 城市污泥新型固化技术及其力学特性[J]. 岩土力学, 2019, 40(11): 4439-4449.
[11] 孟庆山, 范 超, 曾卫星, 余克服, . 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1): 183-190.
[12] 吕擎峰, 周 刚, 王生新, 霍振升, 马 博, . 固化盐渍土核磁共振微观特征[J]. 岩土力学, 2019, 40(1): 245-249.
[13] 陈瑞锋,田高源,米栋云,董晓强,. 赤泥改性黄土的基本工程性质研究[J]. , 2018, 39(S1): 89-97.
[14] 乐慧琳,孙少锐. 注浆材料和预制裂纹缺陷角度对类岩石试件单轴抗压强度及破坏模式的影响[J]. , 2018, 39(S1): 211-219.
[15] 曹 帅,宋卫东,薛改利,. 考虑间歇充填和浓度效应的充填体长期强度试验研究[J]. , 2018, 39(S1): 341-347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!