岩土力学 ›› 2019, Vol. 40 ›› Issue (12): 4675-4684.doi: 10.16285/j.rsm.2018.1844

• 基础理论与实验研究 • 上一篇    下一篇

活性MgO−粉煤灰固化淤泥耐久性研究

王东星1, 2,王宏伟1,邹维列1,徐学勇3   

  1. 1. 武汉大学 土木建筑工程学院 岩土与结构工程安全湖北省重点实验室,湖北 武汉 430072;2. 中国电建集团中南勘测设计研究院有限公司 水能资源利用关键技术湖南省省重点实验室,湖南 长沙 410014;3. 大成科创基础建设股份有限公司,湖北 武汉 430021
  • 收稿日期:2018-10-08 出版日期:2019-12-11 发布日期:2020-01-04
  • 通讯作者: 王宏伟,男,1993年生,博士研究生,主要从事淤泥固化等环境岩土方面的研究工作。E-mail: whuwhw@whu.edu.cn E-mail:dongxing-wang@whu.edu.cn
  • 作者简介:王东星,男,1984年生,博士(后),副教授,博士生导师,主要从事淤泥固化和软基处理等环境岩土工程方面的教学和科研工作。
  • 基金资助:
    国家自然科学基金(No.51879202,No.51609180);武汉市科技计划项目(No.2018060402011257);水能资源利用关键技术湖南省省重点实验室开放研究基金(No.PKLHD201701)。

Study of durability of dredged sludge solidified with reactive MgO-fly ash

WANG Dong-xing1, 2, WANG Hong-wei1, ZOU Wei-lie1, XU Xue-yong3   

  1. 1. Hubei Key Laboratory of Safety for Geotechnical and Structural Engineering, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Hunan Provincial Key Laboratory of Hydropower Development Key Technology, Zhongnan Engineering Corporation Limited, Power China, Changsha, Hunan 410014, China; 3. Dacheng Kechuang Foundation Construction Co., Ltd., Wuhan, Hubei 430021, China
  • Received:2018-10-08 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51879202, 51609180), the Wuhan Science and Technology Project (2018060402011257) and the Open Research Fund of Hunan Provincial Key Laboratory of Hydropower Development Key Technology (PKLHD201701).

摘要: 将绿色环保活性MgO?粉煤灰材料引入淤泥固化,采用系列室内模拟试验,深入研究冻融、浸水和干湿等复杂气候环境下活性MgO?粉煤灰固化淤泥试样的外观形貌和强度特征,明确外界环境干扰诱使固化淤泥性能演化的内在规律。结果表明:活性MgO?粉煤灰固化淤泥具有良好的抗冻融、抗干湿及水稳性,且活性MgO?粉煤灰掺量及MgO/粉煤灰配比提高可进一步改善活性MgO?粉煤灰固化淤泥试样的耐久性能。冻融、浸水和干湿等复杂环境显著劣化固化淤泥抗压强度,其强度水平均低于同龄期标准养护试样。固化淤泥试样无侧限抗压强度随冻融循环次数增加而逐渐降低,随浸水时间增加先降低后趋于稳定,随干湿循环次数增加呈降低的趋势。基于所得试验结果,提出了活性MgO?粉煤灰固化淤泥耐久性演变的内在微观机制模型。

关键词: 淤泥, 活性MgO?粉煤灰, 固化, 抗压强度, 耐久性

Abstract: Based on series of laboratory tests including cyclic freeze-thaw, water immersion and cyclic drying-wetting, an experimental study has been performed to analyze the intrinsic change in the compressive strength and appearance of dredged sludge solidified with reactive MgO-fly ash, a green and environmental-friendly binder, and clarify the climate change-induced durability evolution. The test results indicate that the dredged sludge solidified with reactive MgO-fly ash has outstanding performance in resisting the damage from cyclic freeze-thaw, water immersion and cyclic drying-wetting. The durability performance of reactive MgO-fly ash solidified sludge is significantly enhanced as the MgO-fly ash content and mass ratio of MgO to fly ash increase. The strength behavior of MgO-fly ash solidified sludge is largely weakened by water immersion, cyclic dry-wet and cyclic freeze-thaw, and this causes a smaller compressive strength than that of samples cured under standard condition. As the number of freeze-thaw cycle increases, the compressive strength tends to decrease gradually. The compressive strength of samples immersed in water is initially reduced, and then changes within a limited interval. The compressive strength of damaged samples decreases with the increasing drying-wetting cycles. Based on the test results, an intrinsic microscopic mechanism model is proposed for the durability evolution of dredged sludge solidified with reactive MgO-fly ash.

Key words: sludge, reactive MgO-fly ash, solidification, compressive strength, durability

中图分类号: 

  • TU 447
[1] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[2] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 碱溶液预降解淤泥有机质的效果与机制讨论[J]. 岩土力学, 2020, 41(5): 1567-1572.
[3] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 偏高岭土增强石灰-水泥固化淤泥的耐久性研究[J]. 岩土力学, 2020, 41(4): 1146-1152.
[4] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[5] 高运昌, 高盟, 尹诗, . 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(S1): 231-236.
[6] 和法国, 吕燃, 粟华忠, 周瑾, 张景科, 王南, . SH材料加固夯筑遗址土耐久性试验及机理研究[J]. 岩土力学, 2019, 40(S1): 297-307.
[7] 李 贤, 汪时机, 何丙辉, 沈泰宇, . 土体适用MICP技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2964.
[8] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[9] 郑耀林, 章荣军, 郑俊杰, 董超强, 陆展, . 絮凝-固化联合处理超高含水率 吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8): 3107-3114.
[10] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[11] 王东星, 肖 杰, 肖衡林, 马 强, . 武汉东湖淤泥碳化-固化试验研究[J]. 岩土力学, 2019, 40(5): 1805-1812.
[12] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[13] 张 聪, 梁经纬, 阳军生, 曹 磊, 谢亦朋, 张贵金, . 堤坝脉动注浆浆液扩散机制及应用研究[J]. 岩土力学, 2019, 40(4): 1507-1514.
[14] 王 琦, 孙会彬, 江 贝, 高 松, 李术才, 高红科, . 基于数字钻探和支持向量机预测岩体 单轴抗压强度的方法[J]. 岩土力学, 2019, 40(3): 1221-1228.
[15] 查甫生, 刘晶晶, 许龙, 邓永锋, 杨成斌, 储诚富, . 水泥−粉煤灰固化/稳定重金属污染土的电阻率 特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!