岩土力学 ›› 2019, Vol. 40 ›› Issue (8): 2956-2964.doi: 10.16285/j.rsm.2018.1703

• 基础理论与实验研究 • 上一篇    下一篇

土体适用MICP技术的渗透特性条件研究

李 贤1, 2,汪时机2,何丙辉1,沈泰宇2   

  1. 1. 西南大学 资源与环境学院,重庆 400715;2. 西南大学 工程技术学院,重庆 400715
  • 收稿日期:2018-09-14 出版日期:2019-08-12 发布日期:2019-08-24
  • 通讯作者: 何丙辉,男,1966年生,博士,教授,博士生导师,主要从事水土保持和农业水土工程方面的教学和科研工作。E-mail: hebinghui@swu.edu.cn E-mail: haoyushi@swu.edu.cn
  • 作者简介:李贤,女,1978年生,博士研究生,讲师,主要从事水土工程和岩土力学方面的教学和科研工作。
  • 基金资助:
    国家自然科学基金(No. 11572262, No. 41771312);重庆市留学人员回国创业创新支持计划项目(No. CX2018103)。

Permeability condition of soil suitable for MICP method

LI Xian1, 2, WANG Shi-ji2, HE Bing-hui1, SHEN Tai-yu2   

  1. 1. College of Resource and Environment, Southwest University, Chongqing 400715, China, 2. College of Engineering and Technology, Southwest University, Chongqing 400715, China)
  • Received:2018-09-14 Online:2019-08-12 Published:2019-08-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(11572262, 41771312) and the Chongqing Innovative Program for the Returned Overseas Chinese Scholars (CX2018103).

摘要: 影响土体适用微生物诱导碳酸钙沉淀(MICP)技术的主要因素有颗粒的有效粒径、孔隙直径、颗粒级配以及水动力学参数等,实际工程土中复杂的孔隙结构难以通过单一的参数来衡定,而土体的渗透性能够综合反映诸多因素。针对分步、低速工艺下的定容量饱和渗透灌浆,提出了在满足土壤颗粒粒径和微生物尺寸相容性的前提下,以渗透系数表征的土体适用MICP技术的条件判断公式;并通过涵盖砂土、粉土、砂质黏性紫色土、膨胀土等9种土(控制粒径 0.040~0.913 mm,初始孔隙率 31.5%~54.9%)的固化试验、渗透试验和强度试验进行了验证。结果表明:结合渗透性折减参数 值的选取(无黏性土 ,黏性土 ),渗透条件Ⅲ可适用于多种土体;渗透条件Ⅰ适用于MICP技术广为应用的砂土。同时得出了灌浆浆液总量和灌浆总时长的计算公式,为MICP固土技术可行性评估和进一步推广应用提供参考。

关键词: 渗透系数, MICP, 适用性, 土体基质, 固化参数

Abstract: The application of microbial-induced calcite precipitation (MICP) technology in the soil is mainly affected by the factors: the effective particle size, pore diameter, particle gradation, and hydrodynamic parameters of the particles. The complex pore structure of the soil is difficult to be determined by a single parameter in practical engineering, whereas most of them can be reflected comprehensively by the permeability of the soil. The conditional judgment formulas are proposed for the saturated osmotic grouting with the constant capacity, the step-by-step and low-speed process in this paper. Moreover, with the premise of the size compatibility between the microorganism and the soil particle, the formulas are suitable for MICP method in the soil characterised by the permeability coefficient. Furthermore, the formulas are verified by conducting solidification test, permeability test and strength test on nine types of soil (control particle size 0.040-0.913 mm, initial porosity 31.5%-54.9%) including sand, silt, sandy-clayey purple soil and expansive soil. In the condition of the appropriate value of the permeability reduction parameter ( for cohesionless soil, for cohesive soil), it is showed that the third permeability condition can be applied to all types soil in the tests. In addition, the first permeability condition is more suitable for sandy soil than others in MICP technology. Meanwhile, the formulas of the total volume of grouting solution and the total grouting time are obtained, which provide references for the feasibility assessment of the MICP method and further promotion of this technology.

Key words: permeability coefficient, MICP, applicability, soil matrix, solidification parameters

中图分类号: 

  • TU 473
[1] 李利平, 朱宇泽, 周宗青, 石少帅, 陈雨雪, 屠文锋. 隧道突涌水灾害防突厚度计算方法及适用性评价[J]. 岩土力学, 2020, 41(S1): 41-50.
[2] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[3] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[4] 范日东, 杜延军, 刘松玉, 杨玉玲, . 无机盐溶液作用下砂−膨润土竖向隔离屏障 材料化学相容性试验研究[J]. 岩土力学, 2020, 41(3): 736-746.
[5] 吴二鲁, 朱俊高, 王龙, 陈鸽, . 粗粒料的单参数级配方程及其适用性研究[J]. 岩土力学, 2020, 41(3): 831-836.
[6] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[7] 李红坡, 陈征, 冯健雪, 蒙宇涵, 梅国雄, . 双层地基水平排水砂垫层位置优化研究[J]. 岩土力学, 2020, 41(2): 437-444.
[8] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[9] 王刚, 韦林邑, 魏星, 张建民, . 压实黏土三轴压缩变形过程中的渗透性变化规律[J]. 岩土力学, 2020, 41(1): 32-38.
[10] 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349.
[11] 徐浩青, 周爱兆, 姜朋明, 刘顺青, 宋苗苗, 陈亮, . 不同砂−膨润土垂直防渗墙填筑土料的掺量研究[J]. 岩土力学, 2019, 40(S1): 424-430.
[12] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[13] 胡明鉴, 崔 翔, 王新志, 刘海峰, 杜 韦, . 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930.
[14] 范日东, 刘松玉, 杜延军, . 基于改进滤失试验的重金属污染 膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40(8): 2989-2996.
[15] 余良贵, 周建, 温晓贵, 徐杰, 罗凌晖, . 利用HCA研究黏土渗透系数的标准探索[J]. 岩土力学, 2019, 40(6): 2293-2302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!