岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 1-12.doi: 10.16285/j.rsm.2020.0401

• 基础理论与实验研究 •    下一篇

酸碱污染黄土抗剪强度演化规律及微观机制

刘宽  1,叶万军1,高海军2,董琪3   

  1. 1. 西安科技大学 建筑与土木工程学院,陕西 西安 710054; 2. 陕西省延安公路管理局,陕西 延安 716000;3. 陕西科技控股集团有限责任公司,陕西 西安 710003
  • 收稿日期:2020-04-07 修回日期:2021-03-16 出版日期:2022-06-30 发布日期:2022-07-13
  • 作者简介:刘宽,男,1994年生,博士研究生,主要从事岩土体稳定与地质灾害防治方面的研究。
  • 基金资助:
    国家自然科学基金项目(No.41672305,No.42072319);陕西省重点研发计划项目(No.2017ZDXM-SF-082)

Evolution law and microscopic mechanism of shear strength of acid- or alkali-contaminated loess

LIU Kuan1, YE Wan-jun1, GAO Hai-jun2, DONG Qi3   

  1. 1. School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China; 2. Yan’an Highway Administration Bureau of Shaanxi Province, Yan’an, Shaanxi 716000, China; 3. Shaanxi Science and Technology Holding Group Co., Ltd., Xi’an, Shaanxi 710003, China
  • Received:2020-04-07 Revised:2021-03-16 Online:2022-06-30 Published:2022-07-13
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41672305, 42072319) and the Key R&D Project of Shaanxi Province of China (2017ZDXM-SF-082)

摘要: 为探索酸碱污染对天然黄土抗剪强度的影响,首先对原状黄土试样浸泡不同浓度的HCl和NaOH溶液,而后展开三轴强度试验、扫描电镜测试、压汞试验以及土体化学组成和液塑限的测定,研究酸碱污染作用对黄土抗剪强度、微观结构、化学成分和塑性的影响规律。结果表明:酸污染浓度增加,土体应力−应变曲线峰值衰减,抗剪强度劣化,黏聚力近指数趋势折减,内摩擦角相对稳定;碱污染浓度增加,土体应力−应变曲线峰值提升,抗剪强度增大,黏聚力增幅显著,内摩擦角略增;酸污染后,土体颗粒形态破碎,胶结物质溶解,颗粒与孔隙间界限模糊,骨架颗粒间孔隙、黏粒间孔隙含量及尺寸均增大;碱污染后,土体支架孔隙塌落,次生胶结均衡了局部损伤,补强了结构联结度,骨架颗粒间孔隙含量及尺寸均减小,黏粒间孔隙尺寸减小而含量增加;浸泡酸液后,土体内阳离子含量显著增加,碳酸钙含量急剧减少,液塑限均减小;浸泡碱液后,土体内Al3+略有增加,其余阳离子平缓减少,碳酸钙含量小幅增加,液塑限均增大。分析试验结果,归纳了酸碱污染黄土抗剪强度演化的微观机制:酸碱污染效应下,土体内矿物溶解、离子交换、颗粒及孔隙结构调整,驱动土体初始结构损伤,新生结构形成,这一综合效应对土体抗剪强度而言是优是劣,取决于初始结构的损伤与新生结构的形成哪个更占优势。

关键词: 土力学, 原状黄土, 酸碱污染土, 抗剪强度, 微观机制

Abstract: To explore the influence of acid or alkali contamination on the shear strength of natural loess, the intact loess samples were first immersed in various concentrations of HCl and NaOH solutions. Then, triaxial shear tests, scanning electron microscopy tests, and mercury intrusion tests were carried out, and the soil chemical composition as well as liquid and plastic limits were measured, so as to assess the influence of acid or alkali contamination on the shear strength, microstructure, chemical composition and plasticity of loess. The results indicate that with the increase of the acid concentration, the peak of soil stress-strain curve attenuates, the shear strength deteriorates, the cohesion decreases exponentially, and the internal friction angle is relatively stable. As the alkali concentration increases, both the peak of soil stress-strain curve and the shear strength increase, the cohesion enhances markedly, and the internal friction angle enlarges slightly. Acid contamination breaks the soil particles, dissolves the cementing material, blurs the boundary between particles and pores, and increases the number and size of pores between skeleton particles and those between clay particles. Alkali contamination leads to the scaffold pore collapse of the soil, and the secondary cementation balances the local damage and strengthens the structural connection. Besides, the content and size of pores between skeleton particles decrease while more pores with a smaller size form between the clay particles. After soaking in acid solutions, the cation content in the soil increases notably, the calcium carbonate content decreases sharply, and the liquid and plastic limits are reduced. After soaking in alkaline solutions, both Al3+ and calcium carbonate in soil increase slightly, other cations decrease gently, and the liquid and plastic limits increase. Based on the analysis of test results, the microscopic mechanism of the evolution of the shear strength of loess contaminated by acid or alkali was summarized. Acid or alkali contamination resulted in mineral dissolution, ion exchange, and adjustment of particle and pore structure in the soil, destroying the initial structure of the soil and facilitating the formation of new structures. It is the damage of the initial structure or the new structure formation taking the dominance that decides the comprehensive effect improving or impairing the shear strength of the soil.

Key words: soil mechanics, intact loess, acid- or alkali-contaminated soil, shear strength, microscopic mechanism

中图分类号: 

  • TU411
[1] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[2] 曾立峰, 邵龙潭, 郭晓霞, . 土中有效应力概念的起源与发展[J]. 岩土力学, 2022, 43(S1): 127-144.
[3] 李丽华, 方亚男, 肖衡林, 李文涛, 曹毓, 徐可, . 赤泥复合物固化/稳定化镉污染土特性研究[J]. 岩土力学, 2022, 43(S1): 193-202.
[4] 郑威威, 洪义, 王立忠, . 含气软黏土的不排水抗剪强度计算模型[J]. 岩土力学, 2022, 43(8): 2233-2240.
[5] 侯乐乐, 翁效林, 李 林, 周容名, . 考虑含水率影响的结构性黄土临界状态模型[J]. 岩土力学, 2022, 43(3): 737-748.
[6] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[7] 杨洲, 程晓辉, 麻强, 刘伟, 谢庄子, . 高填方地基不排水稳定性分析强度指标研究[J]. 岩土力学, 2022, 43(1): 218-226.
[8] 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126.
[9] 夏鑫, 姜元俊, 苏立君, MEHTAB Alam, 李佳佳, . 基于界面黏结的含根土抗剪强度极限值估算模型[J]. 岩土力学, 2021, 42(8): 2173-2184.
[10] 王斌, 韩幽铭, 周欣, 陈成, 张先伟, 桂蕾, . 太湖湖相黏土层剪切模量衰减特性的 原位测试研究[J]. 岩土力学, 2021, 42(7): 2031-2040.
[11] 王家辉, 饶锡保, 江洎洧, 姚劲松, 熊诗湖, 卢一为, 李浩民, . 振冲碎石桩复合地基抗剪机制的模型试验研究[J]. 岩土力学, 2021, 42(4): 1095-1103.
[12] 刘嘉, 冯德銮, . 考虑土颗粒微细观运动的多尺度耦合 有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1200.
[13] 杨爱武, 杨少朋, 郎瑞卿, 陈子荷, . 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593-600.
[14] 吴奔, 刘维, 史培新, 付春青. 盾构隧道掘进面失稳螺旋破坏机制分析[J]. 岩土力学, 2021, 42(3): 767-774.
[15] 李珍玉, 欧阳淼, 肖宏彬, 王聚山, 李涛, 刘思思, . 基于根系构型的调控提高植物边坡根系固土能力[J]. 岩土力学, 2021, 42(12): 3271-3280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .