岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 117-126.doi: 10.16285/j.rsm.2023.0250

• 基础理论与实验研究 • 上一篇    下一篇

中国南海珊瑚砂的多尺度颗粒形貌特征分析

马成昊1, 2,朱长歧1,瞿茹1, 2,刘海峰1,王天民1, 2,胡涛1, 3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 桂林理工大学 土木与建筑工程学院,广西 桂林 541004
  • 收稿日期:2023-02-28 接受日期:2023-04-20 出版日期:2023-11-16 发布日期:2023-11-16
  • 通讯作者: 朱长歧,男,1963年生,博士,研究员,博士生导师,主要从事海洋工程地质、珊瑚礁岩土的力学特性、地基加固理论的研究及实践。E-mail: cqzhu@whrsm.ac.cn E-mail:1655547758@qq.com
  • 作者简介:马成昊,男,1997年生,博士研究生,主要从事钙质砂颗粒特性方面的研究。
  • 基金资助:
    自然科学基金面上项目(No. 42277185, No. 42107202);湖北省自然科学基金(No. 2020CFB243)。

Multi-scale particle morphology analysis of coral sand in South China Sea

MA Cheng-hao1, 2, ZHU Chang-qi1, QU Ru1, 2, LIU Hai-feng1, WANG Tian-min1, 2, HU Tao1, 3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2023-02-28 Accepted:2023-04-20 Online:2023-11-16 Published:2023-11-16
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (42277185,42107202) and the Hubei Natural Science Foundation(2020CFB243).

摘要: 颗粒形貌是影响珊瑚砂力学性质的重要参数,研究珊瑚砂多尺度形貌特征有助于从细观角度阐释其力学特性。基于颗粒动态图像分析技术对不同粒径范围内超过20万个珊瑚砂和陆源石英砂(包括人工破碎石英砂和天然石英砂)颗粒开展颗粒形貌扫描和对比分析,提出了适用于珊瑚砂的颗粒形状分类标准,并从颗粒形状、磨圆度和凸度3个尺度上揭示了海相珊瑚砂与陆源石英砂颗粒形貌的差异性。结果表明:(1)珊瑚砂主要由块状、片状及棒状3种类型的颗粒组成,以伸长率和扁平率为0.5作为珊瑚砂颗粒形状的划分阈值进行颗粒形状分类,该分类方法的准确率可达90%。(2)珊瑚砂中块状颗粒占比最大,且含量大于50%。随着粒径增加,块状颗粒占比增加,片状颗粒占比下降,而棒状颗粒基本维持不变;随着粒径的增加,石英砂中的块状颗粒占比高于珊瑚砂,这是由颗粒的矿物性质决定的,而与颗粒的风化破碎方式无关。(3)人工破碎石英砂的磨圆度与珊瑚砂的较为接近,且略小于天然石英砂。块状颗粒的磨圆度大于片状颗粒,更大于棒状颗粒,因此块状颗粒占比越高,集合体的磨圆度越大。(4)珊瑚砂的颗粒凸度介于0.85~1.00间,石英砂的凸度大于珊瑚砂。随着粒径的增加,珊瑚砂的凸度减小明显,而石英砂的凸度变化不大。

关键词: 珊瑚砂, 陆源石英砂, 颗粒形状, 磨圆度, 凸度

Abstract: Particle morphology is an important parameter affecting the mechanical properties of coral sand. Studying the multi-scale morphological characteristics of coral sand is helpful to interpret its mechanical properties from the microscopic perspective. Based on the particle dynamic image analysis technology, this study carried out particle morphology scanning and comparative analysis on more than 200 thousand coral sand and terrigenous quartz sand (including artificial broken quartz sand and natural quartz sand) particles in different particle size ranges, and proposed the classification standard of particle shape suitable for coral sand. The difference of particle morphology between marine coral sand and terrigenous quartz sand was revealed from particle shape, roundness and convexity. The findings indicate that: (1) Coral sand is mainly composed of blocky, flaky and bar-shapes particles, taking the elongation ratio and flatness ratio of 0.5 as the threshold for the classification of coral sand particle shape, the accuracy of this classification method can reach 90%. (2) The proportion of blocky particles in coral sand is the largest and the content is more than 50%. With the increase of particle size, the proportion of blocky particles increases, and the proportion of flaky particles decreases, while the proportion of bar-shaped particles basically remains unchanged. With the increase of particle size, the proportion of blocky particles in quartz sand is higher than coral sand, which is determined by the mineral properties of the particles, rather than the weathering and crushing mode of the particles. (3) Artificial broken quartz sand and coral sand have relatively similar particle roundness, and slightly less than that of natural quartz sand. The roundness of blocky particles is the highest, followed by flaky particles and the lowest is bar-shaped particles. Therefore, the roundness of aggregate increases with the proportion of blocky particles. (4) The convexity of coral sand is between 0.85 and 1.00, which is lower than that of quartz sand. With the increase of particle size, the convexity of coral sand decreases obviously, while the convexity of quartz sand changes little.

Key words: coral sand, terrigenous quartz sand, particle shape, roundness, convexity

中图分类号: 

  • TU 411
[1] 瞿茹, 朱长歧, 刘海峰, 王天民, 马成昊, 王星, . 珊瑚砂界限干密度确定方法的比较研究[J]. 岩土力学, 2023, 44(S1): 461-475.
[2] 杨铮涛, 秦悠, 吴琪, 陈国兴, . 循环加载频率对饱和珊瑚砂液化特性的影响[J]. 岩土力学, 2023, 44(9): 2648-2656.
[3] 赵津桥, 丁选明, 刘汉龙, 欧强, 蒋春勇, . 珊瑚砂振冲密实加固响应室内模型试验研究[J]. 岩土力学, 2023, 44(8): 2327-2336.
[4] 秦悠, 杜歆宇, 马维嘉, 吴琪, 陈国兴, . 不同循环应力路径下饱和珊瑚砂超静孔压增长的改进应力模型[J]. 岩土力学, 2023, 44(6): 1729-1738.
[5] 张季如, 郑颜军, 彭伟珂, 王磊, 陈敬鑫. 填土应力路径下珊瑚砂幂律应力-应变模型的适用性研究[J]. 岩土力学, 2023, 44(5): 1309-1318.
[6] 骆赵刚, 丁选明, 欧强, 蒋春勇, 方华强, . 土工格栅加筋珊瑚砂的强度及变形特性试验研究[J]. 岩土力学, 2023, 44(4): 1053-1064.
[7] 郅彬, 王小婵, 刘恩龙, . 颗粒形状对粒状材料破碎演化规律及强度准则影响[J]. 岩土力学, 2023, 44(3): 649-662.
[8] 彭赟, 胡明鉴, 阿颖, 王雪晴, . 珊瑚砂热物理参数测试与预测模型对比分析[J]. 岩土力学, 2023, 44(3): 884-895.
[9] 马登辉, 韩迅, 关云飞, 唐译, . 珊瑚颗粒孔隙结构及渗流特性分析[J]. 岩土力学, 2022, 43(S2): 223-230.
[10] 苏宇宸, 王媛, 唐辉明, 仲恒, 李欣, 刘超福, 吕亚茹, . 落石连续冲击下废弃混凝土垫层 宏细观缓冲机制研究[J]. 岩土力学, 2022, 43(10): 2698-2706.
[11] 刘抗, 陈国兴, 吴琪, 马维嘉, 秦悠, . 循环加载方向对饱和珊瑚砂液化特性的影响[J]. 岩土力学, 2021, 42(7): 1951-1960.
[12] 沈扬, 冯照雁, 邓珏, 陈锴嘉, 许俊红, . 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290.
[13] 吕亚茹, 王冲, 黄厚旭, 左殿军, . 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352-360.
[14] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[15] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[3] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[4] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[5] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[6] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[7] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .
[8] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[9] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .
[10] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857 -1863 .