岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 884-895.doi: 10.16285/j.rsm.2022.1321

• 基础理论与实验研究 • 上一篇    下一篇

珊瑚砂热物理参数测试与预测模型对比分析

彭赟1, 2,胡明鉴1,阿颖3,王雪晴1, 4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 桂林理工大学 土木与建筑工程学院,广西 桂林 541004;3. 中冶南方城市建设工程技术有限公司,湖北 武汉 430062;4. 中国科学院大学,北京 100049
  • 收稿日期:2022-07-03 接受日期:2022-08-20 出版日期:2023-03-21 发布日期:2023-03-24
  • 通讯作者: 胡明鉴,男,1974年生,博士,研究员,主要从事工程地质和水文地质方面的研究。E-mail: mjhu@whrsm.ac.cn E-mail:494188695@qq.com
  • 作者简介:彭赟,女,1997年生,硕士研究生,主要从事工程地质和水文地质方面的测试与分析研究。
  • 基金资助:
    国家自然科学基金项目(No.41572304)。

Testing of coral sand thermal physical parameters and comparative analysis of prediction models

PENG Yun1, 2, HU Ming-jian1, A Ying3, WANG Xue-qing1, 4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, Guangxi 541004, China; 3. WISDRI City Construction Engineering & Research Incorporation Ltd., Wuhan, Hubei 430062, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-07-03 Accepted:2022-08-20 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41572304).

摘要: 在我国“海洋强国”建设下,南海岛礁建设顺利推进,以浅层礁坪为介质的地源热泵技术、能量桩等,实质是与礁砂介质能量交换的过程,需进一步掌握珊瑚砂导热性能的演变规律。以南海岛礁珊瑚细砂为研究对象,测定并探讨在不同干密度和含水率下对3大热物理参数的影响,并选用12种砂土热物理参数模型的预测数据与实测数据进行类比分析,提出适宜预测珊瑚细砂导热性能的经验模型。结果表明,珊瑚细砂导热系数和体积比热容、热扩散系数均与干密度呈正相关关系,导热系数和体积比热容与含水率的相关系数高于干密度,而热扩散系数与含水率呈“凸”形增长关系,与干密度的相关系数远高于含水率。基于试验实测数据进行线性回归分析,修订Cote-Konrad 模型与Gangadhara Rao 模型,显著提高模型对珊瑚细砂导热系数预测准确性;通过De Vries 模型与Xu 模型的线性修正,大幅缩小珊瑚细砂体积比热容预测值与实测值的差异,在 Dai 模型相关系数的二元拟合分析基础上,建立表征珊瑚细砂热扩散系数预测模型,为岛礁隔热、控温工程设计以及珊瑚砂热物理特性研究提供参考。

关键词: 珊瑚砂, 热物理参数, 含水率, 干密度, 预测模型

Abstract: The construction of islands and reefs in the South China Sea is progressing smoothly under the strengthening of China’s maritime development. The ground source heat pump technology and energy pile etc., which take shallow reef flat as medium, are essentially a process of energy exchange with reef sand medium, so it is necessary to further grasp the evolution law of thermal conductivity of coral sand. In this paper, coral fine sand of South China Sea reef was examined. Three thermophysical parameters including thermal conductivity, volumetric heat capacity, and thermal diffusivity, were measured, and the influence of dry density and water content on the thermophysical parameters were analyzed. The predicted data by 12 thermophysical parameter models for sand soil were compared with the measured data for analogical analysis. On this basis, an empirical model suitable for predicting the thermal conductivity of coral fine sand was developed. The results show that the thermal conductivity, volumetric heat capacity and thermal diffusivity of coral sand are positively correlated with dry density, and the correlation coefficients of thermal conductivity and volumetric heat capacity with water content are higher than that of dry density, while the correlation coefficient of thermal diffusivity with water content has a “convex” growth relationship, and the correlation coefficient with dry density is much higher than that of water content. The Cote & Konrad model and the Gangadhara Rao model were amended through the linear regression analysis of the measured data. The prediction accuracy of thermal conductivity of coral fine sand by the model was significantly improved. The difference between the predicted and measured values of the volumetric heat capacity of coral sand was significantly reduced by the linear correction of the De Vries model and the Xu model. Based on the binary fitting analysis of the correlation coefficient of Dai model, a prediction model characterizing the thermal diffusivity of coral fine sand was established to provide reference for the design of insulation and temperature control engineering of island reefs as well as the study of thermophysical properties of coral sand.

Key words: coral sand, thermophysical parameters, water content, dry density, predictive model

中图分类号: 

  • TU411
[1] 秦悠, 杜歆宇, 马维嘉, 吴琪, 陈国兴, . 不同循环应力路径下饱和珊瑚砂超静孔压增长的改进应力模型[J]. 岩土力学, 2023, 44(6): 1729-1738.
[2] 张延杰, 何萌, 宋萌, 曹立, 赵海涛, 李梅. 富水砂卵石地层力学特性研究[J]. 岩土力学, 2023, 44(6): 1739-1747.
[3] 张季如, 郑颜军, 彭伟珂, 王磊, 陈敬鑫. 填土应力路径下珊瑚砂幂律应力-应变模型的适用性研究[J]. 岩土力学, 2023, 44(5): 1309-1318.
[4] 骆赵刚, 丁选明, 欧强, 蒋春勇, 方华强, . 土工格栅加筋珊瑚砂的强度及变形特性试验研究[J]. 岩土力学, 2023, 44(4): 1053-1064.
[5] 张金良, 杨风威, 曹智国, 苏伟林, . 大线速度下超高压水射流破岩试验研究[J]. 岩土力学, 2023, 44(3): 615-623.
[6] 孙晓明, 姜铭, 王新波, 臧金诚, 高祥, 缪澄宇, . 万福煤矿不同含水率砂岩蠕变力学特性试验研究[J]. 岩土力学, 2023, 44(3): 624-636.
[7] 王书文, 鞠文君, 张春会, 苏士杰, 陆闯, . 弹脆性圆形煤巷应力跃升及冲击地压预测模型[J]. 岩土力学, 2023, 44(3): 873-883.
[8] 金佳旭, 朱磊, 刘磊, 陈亿军, 姚远, 高腾飞, 李若欣, . 填埋场单井注气气体压力监测试验及预测模型[J]. 岩土力学, 2023, 44(1): 259-267.
[9] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[10] 马登辉, 韩迅, 关云飞, 唐译, . 珊瑚颗粒孔隙结构及渗流特性分析[J]. 岩土力学, 2022, 43(S2): 223-230.
[11] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[12] 张磊, 田苗苗, 卢硕, 李明雪, 李菁华, . 不同含水率煤体液氮致裂渗透率变化规律 及应力敏感性分析[J]. 岩土力学, 2022, 43(S1): 107-116.
[13] 刘杰, 崔瑜瑜, 卢正, 姚海林, . 分散土分散性影响因素及其判别方法初探[J]. 岩土力学, 2022, 43(S1): 237-244.
[14] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[15] 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王光勇,顾金才,陈安敏,徐景茂,张向阳. 全长粘结式锚杆加固洞室抗爆性能试验研究[J]. , 2010, 31(1): 107 -112 .
[2] 刘维正,石名磊. 长江漫滩相软土结构性特征及其工程效应分析[J]. , 2010, 31(2): 427 -432 .
[3] 杨磊,贺为民,周杨,张清明. 深层搅拌桩复合地基的优化设计[J]. , 2010, 31(8): 2575 -2579 .
[4] 迟福东,王进廷,金 峰,汪 强. 土-结构-流体动力相互作用的实时耦联动力试验[J]. , 2010, 31(12): 3765 -3770 .
[5] 艾智勇,成志勇. 层状地基中轴向受荷单桩的边界元法分析[J]. , 2009, 30(5): 1522 -1526 .
[6] 吴振君,葛修润. 求解边坡矢量和安全系数的条分法[J]. , 2009, 30(8): 2337 -2342 .
[7] 徐海清 ,傅志峰 ,梁立刚 ,王国波 ,陈 梁. 列车荷载作用下紧邻垂直多孔隧道环境振动分析[J]. , 2011, 32(6): 1869 -1873 .
[8] 陈金刚 ,徐 平 ,张  ,李亚帮. 膨胀性充填裂隙峰前本构关系实验研究[J]. , 2011, 32(10): 2998 -3003 .
[9] 罗玉龙,吴 强,詹美礼,盛金昌. 考虑应力状态的悬挂式防渗墙-砂砾石地基管涌临界坡降试验研究[J]. , 2012, 33(S1): 73 -78 .
[10] 张智超 ,陈育民 ,刘汉龙 . 微差爆破模拟天然地震的数值分析与效果评价[J]. , 2013, 34(1): 265 -274 .