岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 615-623.doi: 10.16285/j.rsm.2022.0503

• 基础理论与实验研究 •    下一篇

大线速度下超高压水射流破岩试验研究

张金良1, 2,杨风威1, 2,曹智国1, 2, 3,苏伟林1, 2   

  1. 1. 黄河勘测规划设计研究院有限公司,河南 郑州 450003;2. 水利部黄河流域水治理与水安全重点实验室(筹),河南 郑州 450003; 3. 郑州大学 水利与土木工程学院,河南 郑州 450001
  • 收稿日期:2022-04-12 接受日期:2022-07-12 出版日期:2023-03-21 发布日期:2023-03-23
  • 通讯作者: 曹智国,男,1990年生,博士,主要从事隧道工程和特殊地基处理等方面的研究。E-mail: caozhgyrec@163.com E-mail:jlzhangyrec@126.com
  • 作者简介:张金良,男,1963年生,博士,教授级高工,主要从事水利水电工程方面的研究。
  • 基金资助:
    国家重点研发计划(No.2020YFF0426370);国家自然科学基金(No.5217090638);中国博士后科学基金(No.2022M711287);河南省博士后科研项目(No.202101053)

Experimental study on ultra-high pressure water jet rock-breaking at high linear speed

ZHANG Jin-liang1, 2, YANG Feng-wei1, 2, CAO Zhi-guo1, 2, 3, SU Wei-lin1, 2   

  1. 1. Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China; 2. Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (under construction), Zhengzhou, Henan 450003, China; 3. College of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • Received:2022-04-12 Accepted:2022-07-12 Online:2023-03-21 Published:2023-03-23
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2020YFF0426370), the National Natural Science Foundation of China (5217090638), the China Postdoctoral Science Foundation (2022M711287) and the Postdoctoral Research Grant in Henan Province (202101053).

摘要: 高压水射流的破岩效果对高压水射流辅助掘进机破岩技术至关重要。为提升隧道掘进机工况下高压水射流辅助破岩的效率,开展大线速度下超高压水射流破岩试验,分析喷嘴移动线速度、射流压力和喷嘴直径对破岩效果的影响规律,并探究加磨料和射流形式对破岩效果的影响。试验结果表明,随喷嘴移动线速度增加,高压水射流的切割深度和切割宽度均近似线性减小;随射流压力增加,切割深度近似线性增大,压力从200 MPa提高到280 MPa,切割深度增加了72%~82%;喷嘴直径从0.35 mm增大到0.60 mm,切割深度增加了60%~85%。大线速度下加磨料后射流变发散,加磨料的切割深度小于纯水的切割深度,加磨料的切割宽度大于纯水的切割宽度。砂管束流射流模式的能量利用率更高,砂管束流的切割深度比长线射流的切割深度大35%~42%,砂管束流的切割宽度比长线射流的切割宽度大78%~85%。基于Crow切割岩石理论,通过试验数据回归分析,得到大线速度下超高压水射流切割深度半理论半经验预测模型,可为高压水射流辅助掘进机破岩技术中射流切割参数优化提供参考依据。研究成果对提升隧道掘进机工况下超高压水射流辅助破岩的效率是很有意义的。

关键词: 隧道掘进机, 大线速度, 超高压水射流, 切割深度, 预测模型

Abstract: The rock-breaking effect of high-pressure water jet is very important in the rock-breaking technology of high-pressure water jet assisted tunnel boring machine (TBM). In order to improve the efficiency of high-pressure water jet assisted rock-breaking under the working condition of TBM, rock-breaking tests of ultra-high pressure water jet at high linear speed were carried out, and the influences of nozzle moving linear speed, jet pressure and nozzle diameter on the rock-breaking effect were analyzed. The effects of adding abrasive and jet form on the rock-breaking effect were also investigated. The test results show that the cutting depth and cutting width of high-pressure water jet decrease approximately linearly with the increase of nozzle moving linear speed. With the increase of jet pressure, the cutting depth increases approximately linearly, and the pressure is increased from 200 MPa to 280 MPa, the cutting depth is increased by 72%−82%. As the nozzle diameter is increased from 0.35 mm to 0.60 mm, and the cutting depth is increased by 60%−85%. At a high linear speed, the jet flow becomes divergent after adding abrasive. So the cutting depth of adding abrasive is less than that of pure water, and the cutting width of adding abrasive is greater than that of pure water. The cutting depth of sand tube beam is 35%−42% greater than that of long-line jet, and the cutting width of sand tube beam is 78%−85% greater than that of long-line jet. Based on the Crow’s cutting rock theory and regression analysis of test data, a semi-theoretical and semi-empirical prediction model for the cutting depth of ultra-high pressure water jet at high linear speed is obtained, which can provide a reference for the optimization of jet parameters in the rock-breaking technology of high-pressure water jet assisted TBM. The research results are of great significance for improving the efficiency of high-pressure water jet assisted rock-breaking under the working condition of TBM.

Key words: tunnel boring machine, high linear speed, ultra-high pressure water jet, cutting depth, prediction model

中图分类号: 

  • TP69
[1] 孙浩凯, 高阳, 朱光轩, 徐飞, 郑新雨, . 隧道掘进机滚刀破岩动态荷载理论模型及试验研究[J]. 岩土力学, 2023, 44(6): 1657-1670.
[2] 闫长斌, 李高留, 陈健, 李严, 杨延栋, 杨风威, 杨继华, . 基于新表面理论的TBM破岩效率评价指标[J]. 岩土力学, 2023, 44(4): 1153-1164.
[3] 王书文, 鞠文君, 张春会, 苏士杰, 陆闯, . 弹脆性圆形煤巷应力跃升及冲击地压预测模型[J]. 岩土力学, 2023, 44(3): 873-883.
[4] 彭赟, 胡明鉴, 阿颖, 王雪晴, . 珊瑚砂热物理参数测试与预测模型对比分析[J]. 岩土力学, 2023, 44(3): 884-895.
[5] 金佳旭, 朱磊, 刘磊, 陈亿军, 姚远, 高腾飞, 李若欣, . 填埋场单井注气气体压力监测试验及预测模型[J]. 岩土力学, 2023, 44(1): 259-267.
[6] 陈锐, 张星, 郝若愚, 包卫星. 干湿循环下地聚合物固化黄土强度 劣化机制与模型研究[J]. 岩土力学, 2022, 43(5): 1164-1174.
[7] 仉文岗, 顾鑫, 刘汉龙, 张青, 王林, 王鲁琦, . 基于贝叶斯更新的非饱和土坡参数概率 反演及变形预测[J]. 岩土力学, 2022, 43(4): 1112-1122.
[8] 王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透 系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736.
[9] 张魁, 杨长, 陈春雷, 彭赐彩, 刘杰, . 激光辅助TBM盘形滚刀压头侵岩缩尺试验研究[J]. 岩土力学, 2022, 43(1): 87-96.
[10] 江帅, 朱勇, 栗青, 周辉, 涂洪亮, 杨凡杰, . 隧道开挖地表沉降动态预测及影响因素分析[J]. 岩土力学, 2022, 43(1): 195-204.
[11] 李亚峰, 聂如松, 李元军, 冷伍明, 阮波, . 间歇性循环荷载下路基细粒土填料永久 变形特性及预测模型[J]. 岩土力学, 2021, 42(4): 1065-1077.
[12] 闫长斌, 汪鹤健, 杨继华, 陈馈, 周建军, 郭卫新, . 利用PLSR-DNN耦合模型预测TBM净掘进速率[J]. 岩土力学, 2021, 42(2): 519-528.
[13] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 马德良, . 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002.
[14] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[15] 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 奎,高 波. 地铁隧道下穿小河和桥梁的施工方案研究[J]. , 2010, 31(5): 1509 -1516 .
[2] 杨 冰,杨 军,常 在,甘厚义,宋二祥. 土石混合体压缩性的三维颗粒力学研究[J]. , 2010, 31(5): 1645 -1650 .
[3] 肖世国,鲜 飞,王唤龙. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] 叶海林,郑颖人,黄润秋,杜修力,李安洪,许江波. 强度折减动力分析法在滑坡抗滑桩抗震设计中的应用研究[J]. , 2010, 31(S1): 317 -323 .
[5] 张志沛,彭 惠,饶 晓. 软土地基注浆扩散过程数值模拟研究[J]. , 2011, 32(S1): 652 -0655 .
[6] 吴礼舟 ,张利民 ,黄润秋. 成层非饱和土渗流的耦合解析解[J]. , 2011, 32(8): 2391 -2396 .
[7] 刘 润 ,王秀妍 ,刘月辉 ,王武刚. 点支撑缺陷下海底埋管热屈曲分析[J]. , 2011, 32(S2): 64 -69 .
[8] 梁耀哲. 刚性桩复合地基的主动土压力分析[J]. , 2012, 33(S1): 25 -29 .
[9] 韩建新 ,李术才 ,李树忱 ,杨为民 ,汪 雷 . 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. , 2013, 34(2): 342 -346 .
[10] 黄 达 ,岑夺丰 ,黄润秋 . 单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J]. , 2013, 34(2): 535 -545 .