岩土力学 ›› 2023, Vol. 44 ›› Issue (4): 1153-1164.doi: 10.16285/j.rsm.2022.0634
闫长斌1,李高留1,陈健2,李严1,杨延栋3,杨风威4,杨继华4
YAN Chang-bin1, LI Gao-liu1, CHEN Jian2, LI Yan1, YANG Yan-dong3, YANG Feng-wei4, YANG Ji-hua4
摘要:
岩碴是岩−机作用的直接产物,也是评价隧道掘进机(TBM)破岩效率和优化TBM掘进参数的有效指标。依托兰州水源地建设工程和龙岩万安溪引水工程,开展不同岩性条件下TBM岩碴筛分试验,得到了岩碴粒径分布规律。基于新表面理论,从滚刀破岩能量转化角度出发,提出了一种新的TBM破岩效率评价指标。基于岩碴粒径分布规律和TBM掘进参数统计,探讨了新表面理论指标与比能、岩碴粗糙度指数之间的关系,指出了新表面理论指标在反映岩碴破碎程度和评价TBM破岩效率方面的优势。对新表面理论指标与TBM掘进推力以及刀间距s与贯入度p的比值进行回归分析,得到了硬岩(围岩等级为Ⅱ级)和软岩(围岩等级为III级)掘进条件下的TBM最优掘进推力和s/p取值区间。研究表明:(1)新表面理论指标符合岩石破碎学原理,可准确评价TBM破岩效率。岩碴越是破碎,新表面理论指标越大,掘进能耗越高,此时TBM破岩效率相对较低。(2)新表面理论指标与比能、岩碴粗糙度指数均具有良好的线性相关关系。岩碴越是破碎,破碎单位体积岩石的能量消耗越大,新表面理论指标越大,对应的粗糙度指数越小。软岩掘进条件下TBM掘进比能低于硬岩,而岩碴破碎程度高于硬岩。(3)新表面理论指标随着TBM掘进推力和s/p的增加先减小后增大,在硬岩和软岩条件下,当TBM最优掘进推力区间和s/p区间分别为7 400~7 700 kN、13.9~14.4和1 000~1 500 kN、8.0~8.5时,新表面理论指标较小,TBM破岩效率较高。
中图分类号:
[1] | 孙浩凯, 高阳, 朱光轩, 徐飞, 郑新雨, . 隧道掘进机滚刀破岩动态荷载理论模型及试验研究[J]. 岩土力学, 2023, 44(6): 1657-1670. |
[2] | 廖九波, 李夕兵, 王少锋, 杜坤. 截割厚度和截线距对镐型截齿破岩的影响研究[J]. 岩土力学, 2023, 44(4): 1009-1021. |
[3] | 张魁, 杨长, 陈春雷, 彭赐彩, 刘杰, . 激光辅助TBM盘形滚刀压头侵岩缩尺试验研究[J]. 岩土力学, 2022, 43(1): 87-96. |
[4] | 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943. |
[5] | 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729. |
[6] | 温森, 周书宇, 盛桂琳, . 复合岩层中滚刀旋转切割破岩效率试验研究[J]. 岩土力学, 2019, 40(7): 2628-2636. |
[7] | 刘鹤, 刘泉声, 唐旭海, 罗慈友, 万文恺, 陈磊, 潘玉丛, . TBM护盾−围岩相互作用荷载识别方法[J]. 岩土力学, 2019, 40(12): 4946-4954. |
[8] | 翟淑芳,周小平,毕 靖, . TBM滚刀破岩的广义粒子动力学数值模拟[J]. , 2018, 39(7): 2699-2707. |
[9] | 刘泉声,赵怡凡,张晓平,孔晓璇. 灰岩隧道掘进机隧道点荷载试验评价岩石强度方法的研究与探讨[J]. , 2018, 39(3): 977-984. |
[10] | 陈卫忠,马池帅,田洪铭,杨建平,. TBM隧道施工期岩爆预测方法探讨[J]. , 2017, 38(S2): 241-249. |
[11] | 马池帅,陈卫忠,田洪铭,杨建平,. 基于TBM掘进参数的岩石强度估算方法探讨[J]. , 2017, 38(S2): 295-303. |
[12] | 黄 兴,刘泉声,彭星新,雷广峰,魏 莱,. 引大济湟工程TBM挤压大变形卡机计算分析与综合防控[J]. , 2017, 38(10): 2962-2972. |
[13] | 冀佩琦,张晓平,张 旗, . 延脆性变化对隧道掘进机刀具破岩过程及其破坏模式影响的颗粒元模拟分析[J]. , 2016, 37(S2): 724-734. |
[14] | 刘泉声,潘玉丛,孔晓璇,刘建平,时 凯,崔先泽,黄诗冰,. TBM滚刀贯入过程中泥岩破坏特征试验研究[J]. , 2016, 37(S1): 166-174. |
[15] | 张倩倩,韩振南,张梦奇,张建广,. 截齿破岩机制及截线间距优化试验研究[J]. , 2016, 37(8): 2172-2179. |
|