岩土力学 ›› 2021, Vol. 42 ›› Issue (2): 519-528.doi: 10.16285/j.rsm.2020.0164

• 岩土工程研究 • 上一篇    下一篇

利用PLSR-DNN耦合模型预测TBM净掘进速率

闫长斌1,汪鹤健1,杨继华2,陈馈3,周建军3,郭卫新2   

  1. 1. 郑州大学 土木工程学院,河南 郑州,450001;2. 黄河勘测规划设计研究院有限公司,河南 郑州 450003; 3. 中国中铁隧道集团有限公司 盾构及掘进技术国家重点实验室,河南 郑州 450001
  • 收稿日期:2020-02-22 修回日期:2020-11-19 出版日期:2021-02-10 发布日期:2021-02-09
  • 作者简介:闫长斌,男,1979年生,博士,教授,从事岩土与地下工程研究
  • 基金资助:
    国家自然科学基金(No. 41972270,No. U1504523);河南省重点研发与推广专项(No. 182102210014);盾构及掘进技术国家重点实验室开放课题(No. SKLST-2019-K06)

Predicting TBM penetration rate with the coupled model of partial least squares regression and deep neural network

YAN Chang-bin1, WANG He-jian1, YANG Ji-hua2, CHEN Kui3, ZHOU Jian-jun3, GUO Wei-xin2   

  1. 1. School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; 2. Yellow River Engineering Consulting Co., Ltd, Zhengzhou, Henan 450003, China; 3. State Key Laboratory of Shield Machine and Boring Technology, China Railway Tunnel Group Co., Ltd., Zhengzhou, Henan 450001, China
  • Received:2020-02-22 Revised:2020-11-19 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41972270,U1504523), the Key Science and Technology Research Project of Henan (182102210014) and the Opening Foundation of State Key Laboratory of Shield Machine and Boring Technology (SKLST-2019-K06).

摘要: 科学预测隧道掘进机(TBM)净掘进速率,对于隧道(洞)工程施工方法选择、施工进度安排以及成本估计具有重要意义。鉴于TBM施工过程具有高度非线性、模糊性和复杂性等特征,为提高TBM净掘进速率的预测精度和计算效率,采用偏最小二乘回归(PLSR)提取影响参数主成分,再利用深度神经网络(DNN)进行训练预测,提出了一种基于PLSR-DNN耦合方法的TBM净掘进速率预测模型。基于兰州水源地建设工程输水隧洞双护盾TBM施工实测数据,选择岩石单轴抗压强度、单轴抗拉强度、刀盘推力、刀盘转速、岩体完整性系数和岩石耐磨性指数,共6个影响参数,验证了模型预测的合理性,并对不同预测方法的拟合精度和预测精度进行了对比分析。研究结果表明:(1)偏最小二乘回归可有效克服自变量之间的多重共线性问题,将提取的主成分作为深度神经网络的输入层进行训练,简化了神经网络结构;(2)PLSR-DNN耦合预测模型避免了过拟合与拟合不足问题,具有收敛速度快,求解稳定和拟合精度高等特点;(3)PLSR-DNN耦合预测模型平均相对拟合误差2.96%,平均相对预测误差3.27%,其拟合精度和预测精度均明显高于偏最小二乘回归模型、BP神经网络模型以及支持向量回归(SVR)模型。

关键词: 隧道掘进机, 净掘进速率, 偏最小二乘回归, 深度神经网络, 耦合预测模型

Abstract: The scientific prediction of the TBM penetration rate is of great significance to the selection of hydraulic tunnel construction methods, construction schedule and cost estimation. In view of the high nonlinearity, fuzziness and complexity of TBM excavation process, and in order to improve the prediction accuracy and computational efficiency, the partial least squares regression (PLSR) has been applied to extract the principal components of the influencing parameters. Then the deep neural network (DNN) is employed to train and forecast the TBM penetration rate. A prediction model of TBM penetration rate based on the coupled method of PLSR and DNN is proposed. Based on the measured data of the double-shield TBM construction of a water conveyance tunnel in the Lanzhou water source construction project, six impact parameters including the rock uniaxial compressive strength, rock uniaxial tensile strength, cutter head thrust, cutter head speed, rock mass integrity coefficient and rock Cerchar abrasiveness index are selected to verify the prediction reasonability of the model. The fitting and prediction accuracy of the different prediction methods are compared and analyzed. The research results show that the PLSR can effectively overcome the problem of multiple collinearity between the independent variables. The extracted principal components are trained as the input layer of the DNN, which simplifies the structure of the neural network. The PLSR-DNN coupled model effectively avoids the over-fitting and inadequate fitting problems. It has the characteristics of fast convergence, stable solution and high fitting accuracy. The average relative fitting error of the PLSR-DNN prediction model is 2.96%, and the average relative prediction error is 3.27%. The fitting accuracy and prediction accuracy of the PLSR-DNN prediction model is significantly higher than those of PLSR model alone, BP neural network model and SVR model, respectively.

Key words: tunnel boring machine, penetration rate, partial least squares regression, deep neural network, coupling prediction model

中图分类号: 

  • TU 94,TV 554
[1] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[2] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[3] 刘鹤, 刘泉声, 唐旭海, 罗慈友, 万文恺, 陈磊, 潘玉丛, . TBM护盾−围岩相互作用荷载识别方法[J]. 岩土力学, 2019, 40(12): 4946-4954.
[4] 刘泉声,彭星新,黄 兴,雷广峰,魏 莱,刘 鹤,. 全断面隧道掘进机护盾受力监测及卡机预警[J]. , 2018, 39(9): 3406-3414.
[5] 翟淑芳,周小平,毕 靖, . TBM滚刀破岩的广义粒子动力学数值模拟[J]. , 2018, 39(7): 2699-2707.
[6] 刘泉声,赵怡凡,张晓平,孔晓璇. 灰岩隧道掘进机隧道点荷载试验评价岩石强度方法的研究与探讨[J]. , 2018, 39(3): 977-984.
[7] 陈卫忠,马池帅,田洪铭,杨建平,. TBM隧道施工期岩爆预测方法探讨[J]. , 2017, 38(S2): 241-249.
[8] 马池帅,陈卫忠,田洪铭,杨建平,. 基于TBM掘进参数的岩石强度估算方法探讨[J]. , 2017, 38(S2): 295-303.
[9] 刘泉声,刘 琪,刘学伟,孙 磊,张晓波,纪 杰,. 楔刀作用下软硬互层岩体贯入破坏试验研究[J]. , 2017, 38(7): 1849-1855.
[10] 黄 兴,刘泉声,彭星新,雷广峰,魏 莱,. 引大济湟工程TBM挤压大变形卡机计算分析与综合防控[J]. , 2017, 38(10): 2962-2972.
[11] 冀佩琦,张晓平,张 旗, . 延脆性变化对隧道掘进机刀具破岩过程及其破坏模式影响的颗粒元模拟分析[J]. , 2016, 37(S2): 724-734.
[12] 刘泉声,潘玉丛,孔晓璇,刘建平,时 凯,崔先泽,黄诗冰,. TBM滚刀贯入过程中泥岩破坏特征试验研究[J]. , 2016, 37(S1): 166-174.
[13] 程建龙,杨圣奇,潘玉丛,田文岭,赵维生,. 挤压地层双护盾TBM围岩变形及应力场特征研究[J]. , 2016, 37(S1): 371-380.
[14] 肖亚勋,冯夏庭,陈炳瑞,丰光亮. 深埋隧洞即时型岩爆孕育过程的频谱演化特征[J]. , 2015, 36(4): 1127-1134.
[15] 邹 飞 ,李海波 ,周青春 ,莫振泽 ,朱小明 ,牛 磊 ,杨风威 . 岩石节理倾角和间距对隧道掘进机破岩特性影响的试验研究[J]. , 2012, 33(6): 1640-1646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[5] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[6] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[7] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[8] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[9] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .
[10] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .