岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 624-636.doi: 10.16285/j.rsm.2022.0544

• 基础理论与实验研究 • 上一篇    下一篇

万福煤矿不同含水率砂岩蠕变力学特性试验研究

孙晓明1, 2,姜铭1, 2,王新波3,臧金诚4,高祥4,缪澄宇1, 2   

  1. 1. 中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083;2. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083;3. 北京特种工程设计研究院,北京 100028;4. 兖煤万福能源有限公司,山东 菏泽 274922
  • 收稿日期:2022-04-18 接受日期:2022-08-03 出版日期:2023-03-21 发布日期:2023-03-23
  • 通讯作者: 缪澄宇,男,1992年生,博士,在站博士后,主要从事岩土工程与软岩巷道支护方面研究工作。E-mail: mcycumtb@163.com E-mail:sunxiaoming@cumtb.edu.cn
  • 作者简介:孙晓明,男,1970年生,博士,教授,博士生导师,主要从事岩土工程与软岩巷道支护方面教学与研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No.51874311,No.52174096);中央高校基本科研业务(No.2022YJSSB03)。

Experimental study on creep mechanical properties of sandstone with different water contents in Wanfu coal mine

SUN Xiao-ming1, 2, JIANG Ming1, 2, WANG Xin-bo3, ZANG Jin-cheng4, GAO Xiang4, MIAO Cheng-yu1, 2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 3. Beijing Special Engineering Design and Research Institute, Beijing 100028, China; 4. Wanfu Energy Company Limitied of Yanzhou Coal, Heze, Shandong 274922, China
  • Received:2022-04-18 Accepted:2022-08-03 Online:2023-03-21 Published:2023-03-23
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51874311, 52174096) and the Fundamental Research Funds for the Central Universities (2022YJSSB03).

摘要: 为研究深部巷道围岩在地下水作用下的长期蠕变力学特性,采用自主研制的深部软岩五联流变试验系统,开展不同含水率(0%、0.8%、1.6%、2.4%、3.3%)下砂岩吸水软化单轴压缩试验及单轴蠕变试验。通过试验结果研究表明:砂岩的单轴抗压强度、弹性模量和蠕变破坏应力与含水率呈指数下降关系,蠕变破坏应力与单轴抗压强度的比值在0.76~0.84之间;砂岩衰减蠕变阶段时间随着含水率的增加而减少,随应力水平的增加而增加。径向应变比轴向应变先进入稳态蠕变阶段,破坏应力下径向应变的加速蠕变阶段开始时间要先于轴向应变;基于稳态蠕变速率曲线确定了砂岩的长期强度,径向稳态蠕变速率确定的值略小于轴向,长期强度与含水率之间满足负指数关系;将蠕变试验中径向应变与轴向应变之比定义为μc,提出了基于μ值的岩石长期强度确定方法且μc值与含水率无关,对于本次砂岩样品可以认为μc值大于0.3时样品会在一定时间内发生加速蠕变破坏;随着含水率的增加,样品破坏形态由单斜面剪切破坏逐渐演变至X状共轭斜面剪切破坏。研究结果为地下水作用下巷道长期稳定性分析及巷道蠕变破坏的提前预报提供可靠的理论依据。

关键词: 砂岩蠕变, 单轴压缩蠕变, 含水率, 径向应变, 长期强度

Abstract: To study the long-term creep mechanical properties of surrounding rock in the deep roadway under the action of groundwater, a self-developed five-joint rheological experimental system was used to carry out uniaxial compression tests and uniaxial creep tests on sandstone with different water contents (0%, 0.8%, 1.6%, 2.4%, and 3.3%) under water absorption and softening conditions. Some experimental findings were revealed. The uniaxial compressive strength, elastic modulus, and creep failure stress of sandstone decrease exponentially with water content, and the ratio of creep failure stress to uniaxial compressive strength ranges from 0.76 to 0.84. The attenuation creep time of sandstone decreases with the increase of water content and increases with the increase of stress level. The radial strain enters the steady-state creep stage earlier than the axial strain, and the accelerated creep stage of the radial strain under the damage stress starts earlier than the axial strain. The long-term strength of the sandstone is determined based on the steady-state creep rate curve, and the value of steady creep rate in the radial direction is slightly less than the axial one, and the long-term strength satisfies a negative exponential relationship with the water content. The ratio of radial strain to axial strain in the creep test is defined as μc, μc value is independent of water content, and a method for determining the long-term strength of rock based on μc value is proposed. For the sandstone samples used in this study, it can be considered that accelerated creep failure will occur in a particular period of time when the ratio surpasses 0.3. As the water content increases, failure pattern of samples gradually change from single inclined plane shear failure to X-shaped conjugate inclined plane shear failure. The research results provide a reliable theoretical basis for long-term stability analysis and early prediction of roadway creep failure under groundwa

Key words: sandstone creep, uniaxial compression creep, water content, radial strain, long-term strength

中图分类号: 

  • TU451
[1] 张延杰, 何萌, 宋萌, 曹立, 赵海涛, 李梅. 富水砂卵石地层力学特性研究[J]. 岩土力学, 2023, 44(6): 1739-1747.
[2] 彭赟, 胡明鉴, 阿颖, 王雪晴, . 珊瑚砂热物理参数测试与预测模型对比分析[J]. 岩土力学, 2023, 44(3): 884-895.
[3] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[4] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[5] 张磊, 田苗苗, 卢硕, 李明雪, 李菁华, . 不同含水率煤体液氮致裂渗透率变化规律 及应力敏感性分析[J]. 岩土力学, 2022, 43(S1): 107-116.
[6] 刘杰, 崔瑜瑜, 卢正, 姚海林, . 分散土分散性影响因素及其判别方法初探[J]. 岩土力学, 2022, 43(S1): 237-244.
[7] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[8] 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374.
[9] 张婵青, 何凤飞, 姜顺航, 曾子真, 熊峰, 陈江, . 土体含水率监测的移动点热源法研究[J]. 岩土力学, 2022, 43(7): 2025-2034.
[10] 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340.
[11] 郑文红, 施天威, 潘一山, 罗浩, 吕祥锋, . 含水率对岩石电荷感应信号影响规律研究[J]. 岩土力学, 2022, 43(3): 659-668.
[12] 侯乐乐, 翁效林, 李 林, 周容名, . 考虑含水率影响的结构性黄土临界状态模型[J]. 岩土力学, 2022, 43(3): 737-748.
[13] 金解放, 徐 虹, 余 雄, 廖占象. 动荷载和含水率对红砂岩破坏及能耗特性的影响[J]. 岩土力学, 2022, 43(12): 3231-3240.
[14] 李长辉, 武航, 程国勇, 陈宇, 金敏, 常雷, . 不同排水板真空预压软土加固对比试验研究[J]. 岩土力学, 2022, 43(10): 2819-2827.
[15] 赵志强, 戴福初, 闵弘, 谭晔, . 原状黄土−古土壤中水分入渗过程研究[J]. 岩土力学, 2021, 42(9): 2611-2621.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于小军,施建勇,徐杨斌. 考虑各向异性的软黏土扰动状态本构模型[J]. , 2009, 30(11): 3307 -3312 .
[2] 高 玮. 基于蚁群聚类算法的岩石边坡稳定性分析[J]. , 2009, 30(11): 3476 -3480 .
[3] 徐 彬,殷宗泽,刘述丽. 膨胀土强度影响因素与规律的试验研究[J]. , 2011, 32(1): 44 -50 .
[4] 代仁平,郭学彬,宫全美,蒲传金,张志呈. 隧道围岩爆破损伤防护的霍普金森压杆试验[J]. , 2011, 32(1): 77 -83 .
[5] 杨 洋, 姚海林,卢 正. 蒸发条件下路基对气候变化的响应模型及影响因素分析[J]. , 2009, 30(5): 1209 -1214 .
[6] 邓亚虹,夏唐代,彭建兵,李喜安,黄强兵. 水平层状场地自振频率的剪切质点系法研究[J]. , 2009, 30(8): 2489 -2494 .
[7] 左宇军 ,李术才 ,秦泗凤 ,李利平. 对隔水底板破断突水机制的突变理论分析的认识——兼对潘岳教授等提问的答复[J]. , 2011, 32(7): 2236 -2240 .
[8] 楚锡华. 颗粒材料数值样本的坐标排序生成技术[J]. , 2011, 32(9): 2852 -2855 .
[9] 王忠福 ,刘汉东 ,贾金禄 ,黄志全 ,姜 彤 . 大直径深长钻孔灌注桩竖向承载力特性试验研究[J]. , 2012, 33(9): 2663 -2670 .
[10] 林鲁生 ,蒋 刚 ,白世伟 ,刘祖德 . 土体抗剪强度参数取值的统计分析方法[J]. , 2003, 24(2): 277 -280 .