岩土力学 ›› 2024, Vol. 45 ›› Issue (4): 950-960.doi: 10.16285/j.rsm.2023.0644

• 基础理论与实验研究 • 上一篇    下一篇

球状风化花岗岩类土质边坡土-岩界面优势流潜蚀特性研究

豆红强1, 2, 3,谢森华1,简文彬1, 2, 3,王浩1, 2, 3,郭朝旭2, 3   

  1. 1. 福州大学 紫金地质与矿业学院,福建 福州 350108;2. 福建省地质工程勘察院 福建省地质灾害重点实验室,福建 福州 350002; 3. 福建省地质工程勘察院 自然资源部丘陵山地地质灾害防治重点实验室,福建 福州 350002
  • 收稿日期:2023-05-23 接受日期:2023-07-31 出版日期:2024-04-17 发布日期:2024-04-16
  • 通讯作者: 简文彬,男,1963年生,博士,教授,主要从事岩土与地质工程方面的教学与研究工作。E-mail:jwb@fzu.edu.cn
  • 作者简介:豆红强,男,1987年生,博士,副教授,主要从事区域地质灾害评估与预警等方面的教学与科研工作。E-mail:douhq@fzu.edu.cn
  • 基金资助:
    国家自然科学基金(No. 42007235, No. U2005205);福建省自然科学基金(No. 2023J01423);自然资源部丘陵山地地质灾害防治重点实验室开放基金(No. FJKLGH2023K006)。

Characteristics of preferential flow suffosion of soil-rock interface in spherical weathered granite slopes

DOU Hong-qiang1, 2, 3, XIE Sen-hua1, JIAN Wen-bin1, 2, 3, WANG Hao1, 2, 3, GUO Chao-xu2, 3   

  1. 1. Zijin School of Geoloy and Mining, Fuzhou University, Fuzhou, Fujian 350108, China; 2. Fujian Key Laboratory of Geohazard Prevention, Geological Engineering Survey in Fujian Province, Fuzhou, Fujian 350002, China; 3. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources, Geological Engineering Survey in Fujian Province, Fuzhou, Fujian 350002, China
  • Received:2023-05-23 Accepted:2023-07-31 Online:2024-04-17 Published:2024-04-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42007235, U2005205),the Natural Science Foundation of Fujian Province (2023J01423) and the Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources (FJKLGH2023K006).

摘要: 受降雨作用,球状风化花岗岩类土质边坡的土-岩差异风化界面极易演化为优势渗流通道而发生渗流潜蚀,进而加速该类边坡的变形失稳,然而当前有关其渗流潜蚀作用特征、细颗粒迁移规律等的研究仍鲜见开展。基于多孔介质非饱和渗流理论,综合考虑细颗粒运移、潜蚀启动响应与非饱和渗流的耦合关系,提出一种可准确描述土-岩界面渗流潜蚀过程的数值计算框架。采用有限元方法,构建优势流作用下非饱和花岗岩残积土的渗流潜蚀模型,并以均质土柱的渗流潜蚀过程为参考,系统研究3种典型土-岩界面埋藏状态下的优势流潜蚀特性。结果表明:球状风化花岗岩类土质边坡的土-岩界面与基质渗透性存在高度差异性,湿润锋形成向下凹陷的渗透漏斗,且随着降雨的持续,湿润锋的凹陷程度愈发明显;细颗粒流失程度与土-岩界面的埋藏状态相关,其中下填土体工况的优势流潜蚀最为显著,其界面处甚至出现超孔隙水压力,最不利于该类边坡的稳定性。研究成果可为降雨条件下球状风化花岗岩类土质边坡稳定性的准确评价提供科学依据。

关键词: 优势流潜蚀, 有限元, 土-岩界面, 细颗粒运移, 多场耦合

Abstract: Due to rainfall, the soil-rock differential weathering interface of spherical weathered granite soil slopes is prone to evolve into a dominant seepage channel and undergo seepage suffosion, which accelerates the deformation and instability of these slopes. However, little research has been carried out on the characteristics of seepage suffosion and the migration of fine particles. Based on the unsaturated seepage theory of porous media, a numerical calculation framework is established to accurately describe the seepage suffosion process at the soil-rock interface, considering the coupling relationship between the fine particle migration, suffosion initiation response and unsaturated seepage. The finite element method is used to construct a seepage suffosion model for unsaturated granite residual soil under the effect of dominant flow. Based on the seepage suffosion process of homogeneous soil columns, the suffosion characteristics of dominant flow under three typical soil-rock interface burial states are systematically investigated. The results show that the soil-rock interface and the matrix permeability of spherical weathered granite soil slopes are highly variable, with the wetting front forming a downward depression infiltration funnel, and the degree of depression of the wetting front becomes more pronounced as rainfall continues. The degree of fine particle loss is related to the burial state of the soil-rock interface, in which the dominant flow potential suffosion of the under-filled soil condition is the most significant, and even excess pore water pressure occurs at the interface, which is the most unfavorable to the stability of this type of slope. The research results can provide a scientific basis for accurately evaluating the stability of spherical weathered granite soil slopes under rainfall conditions.

Key words: preferential flow suffosion, finite element, soil-rock interface, fine particle migration, multi-field coupling

中图分类号: 

  • TU 457
[1] 孙锐, 阳军生, 张庆贺, 杨峰, . 基于网格自适应加密策略的隧道稳定性三维极限分析下限有限元法研究[J]. 岩土力学, 2024, 45(4): 1256-1264.
[2] 李绍毅. 采用有限元+边界元方法研究非饱和地基中群桩基础的动力阻抗[J]. 岩土力学, 2024, 45(3): 895-907.
[3] 毛佳, 余健坤, 邵琳玉, 赵兰浩. 三维可变形圆化多面体离散单元法[J]. 岩土力学, 2024, 45(3): 908-916.
[4] 王刚, 邓泽之, 金伟, 张建民, . 潜蚀的局部守恒有限元和有限体积交替解法[J]. 岩土力学, 2024, 45(3): 917-926.
[5] 王瑞, 胡志平. 铁路路基动力响应的2.5D有限元方法研究现状及展望[J]. 岩土力学, 2024, 45(1): 284-301.
[6] 应宏伟, 闫旭政, 周建, 龚晓南, 王阳扬, 韩华超, 侯靖. 堤坝软土碎石桩复合地基计算参数研究[J]. 岩土力学, 2023, 44(S1): 669-677.
[7] 刘映晶, 杨杰, 朱汉华, 尹振宇, . 一种新的高渗透性地层中盾构隧道同步注浆浆液损失的多物理场模拟方法[J]. 岩土力学, 2023, 44(9): 2744-2756.
[8] 邓鹏海, 刘泉声, 黄兴. 隧道底板渐进破裂碎胀大变形:一种新的底鼓机制研究[J]. 岩土力学, 2023, 44(5): 1512-1529.
[9] 朱彬, 裴华富, 杨庆, 卢萌盟, 王涛, . 基于随机有限元法的波致海床响应概率分析[J]. 岩土力学, 2023, 44(5): 1545-1556.
[10] HANIFAH Hermil Rizki, RAHARDJO Paulus Pramono, LIM Aswin. 砂土地层圆形深基坑三维分析与测斜仪测量[J]. 岩土力学, 2023, 44(4): 1142-1152.
[11] 王锐松, 郭成超, 林沛元, 王复明, . 富水粉土基坑装配式可回收支护开挖响应分析[J]. 岩土力学, 2023, 44(3): 843-853.
[12] 王瑞, 胡志平, 彭建兵, 王启耀, . 基于二维降阶Hermite插值的铁路路基动力响应2.5D有限元模拟[J]. 岩土力学, 2023, 44(3): 908-915.
[13] 易明星, 朱长歧, 王天民, 刘海峰, 马成昊, 王星, 张珀瑜, 瞿茹, . 启东某场地自升式平台插桩可行性试验研究[J]. 岩土力学, 2022, 43(S2): 487-496.
[14] 李艳朋, 李志远, 胡志强, 林皋, . 基于改进比例边界有限元法的成层场地中峡 谷−地下孔洞体系的散射分析[J]. 岩土力学, 2022, 43(S2): 553-562.
[15] 杨恩光, 杨立云, 胡桓宁, 汪自扬, 张飞. 单轴压缩荷载下闭合裂纹扩展的试验和数值研究[J]. 岩土力学, 2022, 43(S1): 613-622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .