›› 2009, Vol. 30 ›› Issue (3): 721-728.

• 基础理论与实验研究 • 上一篇    下一篇

溪洛渡地下洞室群地震响应的二维及三维数值模型比较分析研究

吕 涛1,李海波1,杨建宏2,周青春1,李俊如1   

  1. 1.中国科学院 武汉岩土力学研究所,武汉 430071;2.国家电力公司成都勘测设计研究院,成都 610072
  • 收稿日期:2007-10-13 出版日期:2009-03-10 发布日期:2011-01-28
  • 作者简介:吕涛,男,1980年生,博士研究生,主要从事地下结构及围岩动力响应方面的研究。
  • 基金资助:

    国家自然科学基金重点项目(No. 50439030)。

Comparison between 2D and 3D numerical analysis for seismic response of Xiluodu underground caverns

LÜ Tao1, LI Hai-bo1, YANG Jian-hong2, ZHOU Qing-chun1, LI Jun-ru1   

  1. 1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Chengdu Hydroelectric Investigation & Design Institute of SPC, Chengdu 610072, China
  • Received:2007-10-13 Online:2009-03-10 Published:2011-01-28

摘要:

验证了显示有限差分方法进行地震波衍射分析的可行性,并基于此方法分别建立了二维(2D)及三维(3D)数值模型,对溪洛渡地下洞室群的地震安全性进行了分析与讨论。研究表明,在唐山余震天津医院地震波作用下洞室群处于安全状态。对比2D及3D数值计算结果可以发现,2D数值模型计算效率远远高于3D数值计算模型;对于建造于完整性较好、强度较高的岩体介质中地下洞室群而言,可以采用2D数值模型粗略估算洞身部分的地震响应,而洞室端面的动力响应则必须通过建立3D模型来进行分析。

关键词: 溪洛渡水电站, 地下洞室, 稳定性, 地震反应, 地震安全性, 显示有限差分法

Abstract:

Feasibility of explicit finite difference method(EFDM) to analyze the diffraction of seismic waves has been investigated. Based on EFDM, numerical models in 2D and 3D of Xiluodu underground cavern groups are generated; and detailed discussion of seismic response of underground cavern groups is carried out. Research shows that underground cavern groups are stable after the excavation; and the underground openings are safe under Tianjin hospital seismic waves arising from Tangshan aftershock. Comparison of numerical results between 2D and 3D of seismic response indicates that (1) 2D model is much more efficient than 3D one; (2) for underground caverns located in relatively intact and hard rock mass, 2D model can be used to predict the mechanical response of sections in the middle of caverns approximately; and 3D model has to be used to analyze the response of the sections near cavern portals.

Key words: Xiluodu Hydropower Plant, underground cavern, stability, seismic response, seismic safety, explicit finite difference method

中图分类号: 

  • O 343.1
[1] 朱彦鹏, 陶钧, 杨校辉, 彭俊国, 吴强, . 框架预应力锚托板结构加固高填方边坡 设计与数值分析[J]. 岩土力学, 2020, 41(2): 612-623.
[2] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[3] 刘顺青, 黄献文, 周爱兆, 蔡国军, 姜朋明, . 基于随机块石模型的土石混合边坡稳定性 分析方法研究[J]. 岩土力学, 2019, 40(S1): 350-358.
[4] 聂秀鹏, 逄焕平, 孙志彬, 谢松梅, 侯超群. 三维加筋边坡地震稳定性上限分析[J]. 岩土力学, 2019, 40(9): 3483-3492.
[5] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[6] 陈冲, 王卫, 吕华永, . 基于复合抗滑桩模型加固边坡稳定性分析[J]. 岩土力学, 2019, 40(8): 3207-3217.
[7] 陈建功, 李 会, 贺自勇, . 基于变分法的均质土坡稳定性分析[J]. 岩土力学, 2019, 40(8): 2931-2937.
[8] 蒋泽锋, 张戈, 朱大勇, 王军, . 锚固力作用下的边坡临界滑动场法研究与应用[J]. 岩土力学, 2019, 40(7): 2799-2806.
[9] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
[10] 陈峥, 何平, 颜杜民, 高红杰, 聂奥祥, . 超前支护下隧道掌子面稳定性极限上限分析[J]. 岩土力学, 2019, 40(6): 2154-2162.
[11] 余 国, 谢谟文, 郑正勤, 覃事河, 杜 岩, . 基于GIS的边坡稳定性计算方法研究[J]. 岩土力学, 2019, 40(4): 1397-1404.
[12] 李 驰, 王 硕, 王燕星, 高 瑜, 斯日古楞, . 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.
[13] 吴梦喜, 高桂云, 杨家修, 湛正刚, . 砂砾石土的管涌临界渗透坡降预测方法[J]. 岩土力学, 2019, 40(3): 861-870.
[14] 王启茜, 周洪福, 符文熹, 叶 飞, . 水流拖曳力对斜坡浅层土稳定性的影响分析[J]. 岩土力学, 2019, 40(2): 759-766.
[15] 张龙飞, 吴益平, 苗发盛, 李麟玮, 康田. 推移式缓倾浅层滑坡渐进破坏力学模型 与稳定性分析[J]. 岩土力学, 2019, 40(12): 4767-4776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 孙德安,陈 波. 重塑超固结上海软土力学特性及弹塑性模拟[J]. , 2010, 31(6): 1739 -1743 .
[4] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[5] 汪 洋,唐雄俊,谭显坤,王元汉. 云岭隧道底鼓机理分析[J]. , 2010, 31(8): 2530 -2534 .
[6] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[7] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[8] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[9] 唐世斌,唐春安,李连崇,张永彬. 湿度扩散诱发的隧洞时效变形数值模拟研究[J]. , 2011, 32(S1): 697 -0703 .
[10] 席人双,陈从新,肖国锋,黄平路. 结构面对程潮铁矿东区地表及岩体移动变形的影响研究[J]. , 2011, 32(S2): 532 -538 .