›› 2017, Vol. 38 ›› Issue (3): 801-809.doi: 10.16285/j.rsm.2017.03.024

• 岩土工程研究 • 上一篇    下一篇

基于上限原理的两种岩溶隧道岩墙厚度计算方法

杨子汉1,杨小礼1,许敬叔1,李永鑫1,孙志彬2   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 合肥工业大学 汽车与交通工程学院,安徽 合肥 230009
  • 收稿日期:2015-04-21 出版日期:2017-03-11 发布日期:2018-06-05
  • 作者简介:杨子汉,男,1989年生,博士研究生,从事隧道与地下工程方面的研究工作。
  • 基金资助:

    国家重点基础研究发展计划项目(No.2013CB036004);国家自然科学基金项目资助(No.51178468,No.51378510,No.51408180);湖南省研究生科研创新项目资助(No.CX2014B069)。

Two methods for rock wall thickness calculation in karst tunnels based on upper bound theorem

YANG Zi-han1, YANG Xiao-li1, XU Jing-shu1, LI Yong-xin1, SUN Zhi-bin2   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
  • Received:2015-04-21 Online:2017-03-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Basic Research Program of China (2013CB036004), the National Natural Science Foundation of China (51178468, 51378510, 51408180) and the Hunan Provincial Innovation Foundation for Postgraduate (CX2014B069).

摘要: 岩溶隧道掌子面附近的高压富水溶腔易造成突水、突泥地质灾害,在施工中确定合适的岩墙厚度是一个亟待解决的技术问题。基于极限分析上限原理提出了两种新的岩墙厚度计算思路,即线性Mohr-Coulomb准则方法与非线性Hoek-Brown准则方法。根据构建的相应三维破坏模式,推导演绎了计算步骤,最终得到了这两种方法的岩墙厚度表达式。采用线性Mohr-Coulomb方法计算了Ⅰ~Ⅴ级围岩下的岩墙安全厚度。结果表明:随着围岩等级的逐级降低,即黏聚力、内摩擦角的减小,岩墙厚度在不断增大。对于非线性Hoek-Brown方法则分析了各个参数对岩墙厚度的影响,并根据计算结果绘制了岩墙的破坏形状与范围;同时,给出了Hoek-Brown常数A、B的建议取值,即围岩Ⅰ至Ⅵ级、岩性条件从好至坏,分别建议A取0.5~0.3,B取0.7~0.9。应用这两种方法分别计算了宜万铁路云雾山隧道与野三关隧道溶腔的预留岩墙厚度,与工程实际吻合良好,从而验证了方法的可行性。这两种计算方法可为今后高风险岩溶地区隧道的设计与施工提供参考。

关键词: 岩溶隧道, 岩墙厚度, 极限分析原理, 突水突泥, Mohr-Coulomb线性准则, Hoek-Brown非线性准则

Abstract: The high pressure and water-bearing caverns close to the face of karst tunnels are liable to induce geological hazard of water inrush and mud outburst, therefore, the determination of appropriate rock wall thickness is a pivotal problem which needs to be solved immediately in tunnel construction. Two procedures, one with linear Mohr-Coulomb criterion and the other for the case of nonlinear Hoek-Brown failure criterion are proposed to compute the rock wall thickness based on upper bound theorem of limit analysis theory. According to the three-dimensional failure pattern established here, the specific procedures are deduced to derive the expressions of rock wall thickness with these two methods. The linear Mohr-Coulomb method is adopted to calculate the rock wall thickness under the surrounding rock ranging from levelⅠto Ⅴ. The results indicate that with the decrease of surrounding rock level, namely a lower values of cohesion and internal frictional angle, the thickness increases continuously. As to the nonlinear Hoek-Brown approach, the effect of each parameter on rock wall thickness is analyzed, and the failure shape and scope of rock wall are plotted based on the calculation results. Meanwhile,the suggested values of constant A, B in Hoek-Brown criterion are given. Namely, the surrounding rock changes from the level Ⅰ to Ⅵ, the lithologic condition ranging from good to bad,it is suggested to give A for 0.5~0.3 and B for 0.7~0.9. The rock wall thicknesses of Yunwushan tunnel and Yesanguan tunnel are calculated with two methods, respectively, and the results are in good agreement with engineering practice, which verifies the validity of the methods in this literature. The two methods could provide reference for the design and construction of tunnels in high-risk karst regions.

Key words: karst tunnels, rock wall thickness, limit analysis theory, water inrush and mud outburst, linear Mohr-Coulomb criterion, nonlinear Hoek-Brown criterion

中图分类号: 

  • U 452.1+2

[1] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[2] 刘宗辉, 刘毛毛, 周东, 蓝日彦, 吴恒, 王业田, . 基于探地雷达属性分析的典型岩溶 不良地质识别方法[J]. 岩土力学, 2019, 40(8): 3282-3290.
[3] 王德明,张庆松,张 霄,王 凯,谭英华. 断层破碎带隧道突水突泥灾变演化模型试验研究[J]. , 2016, 37(10): 2851-2860.
[4] 周宗青 ,李术才 ,李利平 ,石少帅 ,宋曙光 ,王 凯 . 岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J]. , 2013, 34(3): 818-826.
[5] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757-1766.
[6] 孙 谋,刘维宁. 高风险岩溶隧道掌子面突水机制研究[J]. , 2011, 32(4): 1175-1180.
[7] 周雪铭,刘 辉,彭 川,吴 羡. 岩溶隧道开挖对溶洞处治结构影响的数值模拟分析[J]. , 2011, 32(1): 269-275.
[8] 李利平,李术才,张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. , 2010, 31(2): 523-528.
[9] 王 勇,乔春生,孙彩红,刘开云. 基于SVM的溶洞顶板安全厚度智能预测模型[J]. , 2006, 27(6): 1000-1004.
[10] 王建秀 ,朱合华 ,杨立中,. 岩溶隧道长期排水对围岩渗透性的影响[J]. , 2004, 25(5): 715-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!