›› 2012, Vol. 33 ›› Issue (8): 2507-2512.

• 数值分析 • 上一篇    下一篇

基于DE-FEM隧道反分析可视化平台研究及应用

姜谙男1,李 鹏1,唐述林2,王军祥1   

  1. 1. 大连海事大学 道路与桥梁研究所,辽宁 大连 116026;2. 中铁21局集团有限公司,兰州 730000
  • 收稿日期:2011-03-02 出版日期:2012-08-10 发布日期:2012-08-13
  • 作者简介:姜谙男,男,1971年生,博士,教授,主要从事地下工程反馈分析和岩土多场耦合机制方面的研究工作
  • 基金资助:

    国家自然科学基金项目(No. 51079010);中央高校基本科研业务费资助项目(No. 2011JC012,No. 2012TD015)

Development and application of tunnel back analysis visual platform based on DE-FEM

JIANG An-nan1,LI Peng1,TANG Shu-lin2,WANG Jun-xiang1   

  1. 1. Institute of Highway and Bridge Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China; 2. China Railway 21st Bureau Group Co., Ltd., Lanzhou 730000, China
  • Received:2011-03-02 Online:2012-08-10 Published:2012-08-13

摘要: 针对传统反分析优化容易限于局部最小化以及反分析数据不直观等问题,引进一种新的全局智能优化算法(DE),与应力回映的弹塑性非线性有限元(FEM)相结合,实现围岩弹塑性参数快速识别。基于可视化类库(VTK)对单元应力、应变和节点位移等结果数据进行图像显示,从而实现了隧道施工反分析EEOS高性能可视化平台。在介绍算法原理、程序设计基础上,介绍该系统在某工程的应用情况。应用表明,该平台计算收敛快速、识别精度高、结果直观,为隧道工程反分析提供了科学高效的途径。

关键词: 地下工程, 反分析, 差异进化, 可视化, 应力回映

Abstract: Aiming at the conventional back analysis method easily being limited in local optimization and back analysis data being not visualized, a new global intelligent optimization arithmetic–difference evolution (DE) is introduced and combined with stress return mapping nonlinear elastoplastic finite element method(FEM), realizing rapid elastoplastic parameters identification of surrounding rock. Displaying the element stress, element strain and node displacement by image based on visual class library, the visual platform with high performance of tunnel construction back analysis has been realized. After the introduction of arithmetic theory and program design, the engineering application of the platform is also introduced. The application displays that the platform has high computing precision and has visualized computing result, which provides scientific and high effect mean for tunnel back analysis.

Key words: underground engineering, back analysis, difference evolution, visualization, stress return mapping

中图分类号: 

  • TU 45
[1] 刘庆彬, 潘懋, 刘洁, 郭艳军, 张小双, 姚健鹏, 李芳玉, . 基于ParaView的Abaqus有限元输出结果的 可视化与虚拟现实[J]. 岩土力学, 2019, 40(12): 4916-4924.
[2] 李连祥, 刘嘉典, 李克金, 黄亨利, 季相凯, . 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40(10): 4021-4029.
[3] 胡帅伟, 陈士海, . 爆破振动下围岩支护锚杆动力响应解析解[J]. 岩土力学, 2019, 40(1): 281-287.
[4] 董志宏, 钮新强, 丁秀丽, 翁永红, 黄书岭, 裴启涛, 张 练, . 乌东德左岸地下厂房洞室群施工期 围岩变形特征及反馈分析[J]. 岩土力学, 2018, 39(S2): 326-336.
[5] 孙明社,马 涛,申志军,吴 旭,王梦恕,. 复合式衬砌结构中衬砌分担围岩压力比例的研究[J]. , 2018, 39(S1): 437-445.
[6] 王少杰,吕爱钟,张晓莉. 横观各向同性岩体中马蹄形隧洞的位移反分析方法[J]. , 2018, 39(S1): 495-504.
[7] 李建朋,聂庆科,刘泉声,于俊超,. 基于权重反分析的岩溶地面塌陷危险性评价方法研究[J]. , 2018, 39(4): 1395-1400.
[8] 王洪波,张庆松,刘人太,李术才,张乐文,郑 卓,张连震. 基于压水试验的地层渗流场反分析[J]. , 2018, 39(3): 985-992.
[9] 田茂霖,肖洪天,闫强刚,. Hoek-Brown准则岩体力学参数非线性位移反分析[J]. , 2017, 38(S1): 343-350.
[10] 袁艳玲,郭琴琴,周正军,吴震宇,陈建康,姚福海,. 考虑参数相关的高心墙堆石坝材料参数反分析[J]. , 2017, 38(S1): 463-470.
[11] 郑亚飞,张璐璐,张 洁,郑建国,于永堂,. 基于时变监测数据的降雨滑坡多目标随机反分析[J]. , 2017, 38(11): 3371-3377.
[12] 张志增 ,李小昌 ,王克忠,. 考虑剪应力作用时横观各向同性岩体中圆形巷道位移反分析的惟一性[J]. , 2016, 37(S2): 449-460.
[13] 肖俊华,赵锡宏,. 软土地区深埋桩筏基础沉降实测与反分析[J]. , 2016, 37(6): 1680-1688.
[14] 王志丰 ,沈水龙,谢永利,. 水平旋喷桩施工引起周围土体变形分析[J]. , 2016, 37(4): 1083-1088.
[15] 裴启涛,丁秀丽,卢 波,黄书岭,付 敬,韩晓玉. 考虑地应力分布形式的坝址区初始应力场二次反演方法[J]. , 2016, 37(10): 2961-2970.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 孙德安,陈 波. 重塑超固结上海软土力学特性及弹塑性模拟[J]. , 2010, 31(6): 1739 -1743 .
[3] 雷金波,陈从新. 基于双曲线模型的带帽刚性桩复合地基荷载传递机制研究[J]. , 2010, 31(11): 3385 -3391 .
[4] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[5] 胡 琦,凌道盛,陈云敏. 基于Melan解的水平基床系数分析方法及工程运用[J]. , 2009, 30(1): 33 -39 .
[6] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[7] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[8] 唐世斌,唐春安,李连崇,张永彬. 湿度扩散诱发的隧洞时效变形数值模拟研究[J]. , 2011, 32(S1): 697 -0703 .
[9] 席人双,陈从新,肖国锋,黄平路. 结构面对程潮铁矿东区地表及岩体移动变形的影响研究[J]. , 2011, 32(S2): 532 -538 .
[10] 黄 阜,杨小礼,赵炼恒,黄 戡. 基于Hoek-Brown破坏准则的浅埋条形锚板抗拔力上限分析[J]. , 2012, 33(1): 179 -184 .