›› 2006, Vol. 27 ›› Issue (S2): 75-80.

• 基础理论与实验研究 • 上一篇    下一篇

复合土钉支护的有限元数值模拟及稳定性分析

赵 杰1,3,邵龙潭2   

  1. (1. 大连理工大学 土木水利学院,大连,116024; 2.大连理工大学 工程力学系,大连 116024; 3.大连大学 土木工程技术研究与开发中心,大连 116622
  • 收稿日期:2006-07-12 发布日期:2006-12-16
  • 作者简介:赵杰,男,1980年生,博士研究生,大连理工大学土木水力学院,主要从事有限元边坡稳定分析、基坑支护和地基承载力等方面的研究

Numerical simulation and stability analysis of composite soil nailing support

ZHAO Jie1,3, SHAO Long-tan2   

  1. 1.School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; 2.Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China; 3.The R&D Center of Civil Engineering Technology, Dalian University, Dalian 116622, China
  • Received:2006-07-12 Published:2006-12-16

摘要: 在平面应变条件下,对采用水泥搅拌桩复合土钉支护的基坑进行了有限元数值模拟,在此基础上采用有限元稳定分析方法评价基坑的稳定性。通过对复合土钉工作机理的分析,并与普通土钉支护的基坑进行比较,分析二者的差异。通过分析不同支护参数的影响,研究基坑的变形以及稳定性变化规律,为设计和施工提供一定的参考依据。

关键词: 复合土钉支护, 有限元, 变形, 土钉倾角, 安全系数

Abstract: Based on the theory of plane strain, 2D elastoplastic FEM is used to analyze the behavior of composite soil nailing support of deep foundation pit, and evaluate the stability of the soil-nailed wall. The difference between composite soil nailing support and normal soil nailing support are compared; and the influence of supporting parameters on the deformation behavior and stability of foundation pit are analyzed. Some useful conclusions are drawn to supervise the design and construction.

Key words: composite soil nailing, finite element analysis, deformation, dip angle of soil nailing, factor of safety

中图分类号: 

  • O 242.21
[1] 陈峥, 何平, 颜杜民, 高红杰, 聂奥祥, . 超前支护下隧道掌子面稳定性极限上限分析[J]. 岩土力学, 2019, 40(6): 2154-2162.
[2] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[3] 杨杰, 马春辉, 程琳, 吕高, 李斌, . 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2341-2353.
[4] 吴关叶, 郑惠峰, 徐建荣. 三维复杂块体系统边坡深层加固条件下稳定性及 破坏机制模型试验研究[J]. 岩土力学, 2019, 40(6): 2369-2378.
[5] 王翔南, 李全明, 于玉贞, 喻葭临, 吕禾, . 基于扩展有限元法对土体滑坡破坏过程的模拟[J]. 岩土力学, 2019, 40(6): 2435-2442.
[6] 蒲诃夫, 宋丁豹, 郑俊杰, 周 洋, 闫 婧, 李展毅. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692.
[7] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[8] 谷淡平, 凌同华, . 悬臂式型钢水泥土搅拌墙的水泥土 承载比和墙顶位移分析[J]. 岩土力学, 2019, 40(5): 1957-1965.
[9] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[10] 付宏渊, 刘 杰, 曾 铃, 卞汉兵, 史振宁, . 考虑荷载与浸水条件的预崩解炭质泥岩 变形与强度试验[J]. 岩土力学, 2019, 40(4): 1273-1280.
[11] 王 涛, 刘斯宏, 郑守仁, 鲁 洋, . 掺复合浆液堆石料压缩特性试验研究[J]. 岩土力学, 2019, 40(4): 1420-1426.
[12] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[13] 梅慧浩, 冷伍明, 聂如松, 刘文劼, 伍晓伟, . 重载铁路路基面动应力峰值随机分布特征研究[J]. 岩土力学, 2019, 40(4): 1603-1613.
[14] 高 俊, 党发宁, 李海斌, 杨 超, 任 劼, . 沥青混凝土心墙简化解析受力分析模型[J]. 岩土力学, 2019, 40(3): 971-977.
[15] 邱 敏, 袁 青, 李长俊, 肖超超, . 基于孔穴扩张理论的黏土不排水抗剪强度 计算方法对比研究[J]. 岩土力学, 2019, 40(3): 1059-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 顾强康,李 宁,黄文广. 机场高填土地基工后不均匀沉降指标研究[J]. , 2009, 30(12): 3865 -3870 .
[2] 木林隆,黄茂松,龚维明,殷永高. 水平荷载作用下根式基础受力特性分析[J]. , 2010, 31(1): 287 -292 .
[3] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[4] 陈俊生,莫海鸿,刘叔灼,万 顺. 复杂环境深基坑施工过程的模拟分析[J]. , 2010, 31(2): 649 -655 .
[5] 徐林荣,王 磊,苏志满. 隧道工程遭受泥石流灾害的工程易损性评价[J]. , 2010, 31(7): 2153 -2158 .
[6] 许 英,李同春,莫建兵. 沉桩超孔隙水压力对码头边坡稳定的影响[J]. , 2010, 31(8): 2525 -2529 .
[7] 王者超,李术才. 高应力下颗粒材料一维力学特性研究(I):压缩性质[J]. , 2010, 31(10): 3051 -3057 .
[8] 曹振中,侯龙清,袁晓铭,孙 锐,王维铭,陈龙伟. 汶川8.0级地震液化震害及特征[J]. , 2010, 31(11): 3549 -3555 .
[9] 杜延军,金 飞,刘松玉,陈 蕾,张 帆. 重金属工业污染场地固化/稳定处理研究进展[J]. , 2011, 32(1): 116 -124 .
[10] 张玉军. CO2注入岩体的热-气-应力耦合二维弹塑性有限元分析[J]. , 2009, 30(3): 582 -586 .