›› 2016, Vol. 37 ›› Issue (7): 2070-2078.doi: 10.16285/j.rsm.2016.07.031

• 数值分析 • 上一篇    下一篇

碳封存项目井喷CO2扩散危险水平分级方法研究

李 琦1,石 晖1, 2,杨多兴3   

  1. 1. 中国科学院武汉岩土力学研究所,岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中国地震局地壳应力研究所,北京 100085
  • 收稿日期:2016-03-23 出版日期:2016-07-11 发布日期:2018-06-09
  • 作者简介:李琦,男,1972年生,博士,研究员,主要从事酸气回注、CO2地质利用与封存方面的研究工作。
  • 基金资助:

    中国清洁发展机制基金赠款项目“二氧化碳捕获与封存技术的环境影响研究”(No. 2012087);环境保护部环境规划院科研计划专题任务“CCUS示范项目封存环境风险评估试点研究” 资助(No. 2015A111)。

Classification of hazard levels of carbon dioxide dispersion under a well blowout in a CCS project

LI Qi1,SHI Hui1, 2,YANG Duo-xing3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Crustal Dynamics, Chinese Earthquake Administration, Beijing 100085, China
  • Received:2016-03-23 Online:2016-07-11 Published:2018-06-09
  • Supported by:

    This work was supported by the China CDM Fund “Environmental Impact Assessment of CCS” (2012087) and Chinese Academy for Environmental Planning, Ministry of Environmental Protection of the People’s Republic of China, “Environmental Risk Assessment of CCUS Demonstration Project: A Pilot Study” (2015A111).

摘要: 针对碳封存(CCS)项目井喷后的二氧化碳(CO2)气体泄漏扩散对附近居民的影响问题,提出将CO2井喷速率作为分级指标进行扩散危险水平分级。以内蒙古自治区鄂尔多斯市伊金霍洛旗地形、气候等条件为环境背景,以神华CCS示范项目为参考,运用CALPUFF高斯扩散模型模拟发生井喷事故,计算CO2气体扩散影响范围。根据扩散范围与井喷速率变化的相关关系,对CO2扩散危险水平进行分级。根据50 000 ppm浓度的最大扩散范围将CO2井喷扩散分为3个等级:Level 1、Level 2、Level 3,对应的井喷速率范围分别为0~2.5、2.5~10.0、10~20 m/s,对应扩散距离分别为0~130、130~180、180~420 m。通过与模拟场地周围环境条件和人群分布特点的交叉分析,当危险性等级为3级时,会威胁到泄漏井筒附近420 m范围内CCS场地内工作人员、散户居民以及附近公路上的过往行人的安全。该项危险水平分级研究工作有助于健全国家相关部门对CCS的监管,同时有利于推动CCS示范项目的健康发展。

关键词: 二氧化碳地质封存, CO2气体泄漏, 井喷, 监测, 风险评价

Abstract: A classification indicator is proposed and the hazard levels are classified for the carbon dioxide (CO2) dispersion when a well blowout is encountered at a CO2 capture and storage (CCS) site. Taken the topography and climate conditions of Yijinhuoluo Qi in Erdos city, Inner Mongolia, China, as the environmental background, the CALPUFF model is used to simulate a supposed well blowout with a reference import from the Shenhua CCS demonstration project. The dispersion distance of released gases is calculated, then the relationship between the dispersion distance and the blowout speed is chosen to classify the hazard levels of CO2 dispersion, and finally its influence is conducted. According to the maximum dispersion distance of the CO2 concentration in 50 000 ppm, the hazard levels of CO2 dispersion are classified into three levels by using an indicator of blowout speed. A well blowout with a release rate of CO2 between 0 and 2.5 m/s is identified as Level 1 corresponding to the dispersion distance of 0-130 m; a release rate of CO2 between 2.5 and 10 m/s is as Level 2, and the dispersion distance is 130-180 m; a release rate of CO2 between 10 and 20 m/s is as Level 3 with the dispersion distance of 180-420 m. According to the experimental research, it is shown that the persons around the leakage well within 420 m are affected when the hazard level reaches Level 3, which means the workers in the operational site, the residents around and the pedestrians passing on the nearby county road are all affected. Our research on the classification of hazard levels not only contributes to the supervision of relevant government agencies to the CCS projects but also is beneficial to the promotion of coming CCS demonstration projects in China.

Key words: carbon dioxide capture and storage (CCS), CO2 leakage, well blowout, monitoring, risk assessment

中图分类号: 

  • TU 45

[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 侯公羽, 胡涛, 李子祥, 谢冰冰, 肖海林, 周天赐, . 基于分布式光纤技术的采动影响下覆岩 变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 郑 帅, 姜谙男, 张峰瑞, 张勇, 申发义, 姜旭东、. 基于机器学习与可靠度算法的围岩动态分级方法 及其工程应用[J]. 岩土力学, 2019, 40(S1): 308-318.
[5] 陈舞, 张国华, 王浩, 陈礼彪, . 基于粗糙集条件信息熵的山岭隧道坍塌风险评价[J]. 岩土力学, 2019, 40(9): 3549-3558.
[6] 李悄, 孟繁增, 牛远志. 压重顶进框构下穿高铁引起桥墩变形及控制技术[J]. 岩土力学, 2019, 40(9): 3618-3624.
[7] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[8] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[9] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[10] 杨杰, 马春辉, 程琳, 吕高, 李斌, . 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2341-2353.
[11] 王剑锋, 李天斌, 马春驰, 张航, 韩瑀萱, 周雄华, 姜宇鹏, . 基于引力搜索法的隧道围岩微震定位研究[J]. 岩土力学, 2019, 40(11): 4421-4428.
[12] 侯公羽, 韩育琛, 谢冰冰, 魏广庆, 李子祥, 肖海林, 周天赐, . 定点式布设光纤在隧道结构健康监测中的 预拉应变损失研究 [J]. 岩土力学, 2019, 40(10): 4120-4128.
[13] 刘 勇, 冯 帅, 秦志萌. 基于运动角差的滑坡监测点相似性评判方法[J]. 岩土力学, 2019, 40(1): 288-296.
[14] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[15] 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!