›› 2017, Vol. 38 ›› Issue (11): 3247-3254.doi: 10.16285/j.rsm.2017.11.021

• 基础理论与实验研究 • 上一篇    下一篇

酸腐蚀后灰岩动态压缩力学性质的试验研究

李光雷1, 2,蔚立元1,靖洪文1,苏海健1,张 涛1, 2,李 明1   

  1. 1.中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116; 2. 中国矿业大学 力学与土木工程学院,江苏 徐州 221116
  • 收稿日期:2017-04-05 出版日期:2017-11-10 发布日期:2018-06-05
  • 通讯作者: 蔚立元,男,1982年生,工学博士,副教授,硕士生导师,主要从事岩土力学与地下工程方面的科研和教学工作。 E-mail: yuliyuan@cumt.edu.cn E-mail:751208714@qq.com
  • 作者简介:李光雷,1993年生,男,硕士研究生,主要从事岩石动力学方面的研究。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2013CB036003);国家自然科学基金(No. 51579239, No. 51374198)。

Experimental study of dynamic compressive mechanical properties of limestone after acid corrosion

LI Guang-lei1, 2, YU Li-yuan1, JING Hong-wen1, SU Hai-jian1, ZHANG Tao1, 2, LI Ming1   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2017-04-05 Online:2017-11-10 Published:2018-06-05
  • Supported by:

    Supported by the National Key Basic Research and Development Program (973 Program) of China (2013CB036003) and The National Natural Science Foundation of China (51579239, 51374198).

摘要: 地下水化学腐蚀在岩石圈中广泛存在,而岩体也常因承受动荷载而变形破坏。为探究酸腐蚀后灰岩的动态力学性质,将试样分别在pH=3的NaCl和KHSO4混合溶液中浸泡不同时间,通过核磁共振测试获得了部分试样的孔隙率、孔径分布及成像灰度图,并利用分离式 Hopkinson压杆开展了5种应变率的单轴冲击试验。结果表明:随腐蚀时间增加,灰岩孔隙率从自然状态下的0.26%剧增到3.20%(腐蚀28 d),微孔隙尺度也同步增大;动态抗压强度大幅劣化(30.3%),并可根据下降速率区分为2个阶段,而其弹性模量和比能量吸收值则随时间呈指数衰减。自然状态和腐蚀后灰岩的应变率响应规律基本一致:随应变率增大,破坏模式由典型的劈裂破坏向拉剪混合、剪切破坏过渡,直至粉末状破坏;抗压强度和弹性模量近似线性增加,但自然状态下二者对应变率的敏感程度较腐蚀后强烈。酸腐蚀对灰岩动态承载能力和抗变形能力具有重要影响,在工程实践中应加以考虑。

关键词: 灰岩, 酸腐蚀, 腐蚀时间, 应变率, 动态力学性能

Abstract: Rock is usually corroded by chemicals in groundwater. Meanwhile, deformation and failure of rock occur frequently due to the dynamic load in underground engineering. Hence, this study aims to investigate dynamic mechanical properties of limestone corroded in an acid environment. Limestone samples were firstly soaked at pH=3 of KHSO4 solution and NaCl solution for different days, respectively. Then, the porosity, pore size distribution and magnetic resonance image of some samples were obtained by using the nuclear magnetic resonance (NMR) test. Finally, uniaxial dynamic compressive tests were conducted at five strain rates by using the split Hopkinson pressure bar (SHPB) system. The experimental results showed that the porosity of limestone increased sharply with increasing the corrosion time. After 28 d corrosion, the porosity increased from 0.26% in the natural state to 3.20%. Besides, the micro-pores in limestone samples expanded obviously with the corrosion time. It is found that the dynamic compressive strength was significantly reduced (30.3%) and can be divided into two stages according to the descent rate. Moreover, the dynamic elastic modulus and specific energy-absorption decayed exponentially with time. Under natural state and post-corrosion state, limestone samples both exhibited similar responses to the strain rate. Specifically, the failure mode changed from the typical splitting failure to the tensile-shear failure, shear failure, even powders with increasing strain rate. Moreover, the dynamic compressive strength and elastic modulus increased linearly. However, these two mechanical parameters of limestone were both more sensitive to the strain rate in a natural state than post-corrosion. It is proven that the effect of acid corrosion on the dynamic carrying capacity and anti-deformation capacity of limestone is significant, which should be taken into account in practical engineering.

Key words: limestone, acid corrosion, corrosion time, strain rate, dynamic mechanical properties

中图分类号: 

  • TU 452

[1] 罗刚, 张辉傲, 马国涛, 周海文, 胡卸文, 王文健, 王文沛, . 高速岩质滑坡滑面滑动摩擦特性研究——以王山 抓口寺滑坡为例[J]. 岩土力学, 2020, 41(7): 2441-2452.
[2] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[3] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[4] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[5] 郑坤, 孟庆山, 汪稔, 吴文娟, . 不同结构类型珊瑚礁灰岩弹性波特性研究[J]. 岩土力学, 2019, 40(8): 3081-3089.
[6] 王 腾, 吴 瑞. 黏土中海底管线竖向贯入阻力研究[J]. 岩土力学, 2019, 40(3): 871-878.
[7] 高 峰, 熊 信, 周科平, 李杰林, 史文超, . 冻融循环作用下饱水砂岩的强度劣化模型[J]. 岩土力学, 2019, 40(3): 926-932.
[8] 宋战平, 程昀, 杨腾添, 霍润科, 王军保, 刘新荣, . 渗透压作用对灰岩孔隙结构演化规律影响 的试验研究[J]. 岩土力学, 2019, 40(12): 4607-4619.
[9] 马林建, 李增, 罗棕木, 魏厚振, 段力群, . 珊瑚颗粒力学特性应变率效应试验研究[J]. 岩土力学, 2019, 40(12): 4637-4643.
[10] 黄珏皓, 陈 健, 孔令智, 刘府生, 柯文汇, 邱岳峰, 李健斌, . 考虑循环围压与振动频率影响的 饱和软黏土动力特性试验研究[J]. 岩土力学, 2019, 40(1): 173-182.
[11] 孟庆山, 范 超, 曾卫星, 余克服, . 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1): 183-190.
[12] 刘海峰,朱长歧,孟庆山,王 星,李小刚,吴文娟, . 礁灰岩嵌岩桩的模型试验[J]. , 2018, 39(5): 1581-1588.
[13] 赵武胜,陈卫忠,马少森,赵 坤,宋万鹏,李 灿,. 泡沫混凝土隧道减震层减震机制[J]. , 2018, 39(3): 1027-1036.
[14] 向 鹏,纪洪广,蔡美峰,张月征. 抛掷型岩爆震源体能量动态释放机制与几何尺度特征[J]. , 2018, 39(2): 457-466.
[15] 万志辉,戴国亮,龚维明, . 珊瑚礁灰岩层后压浆桩增强效应作用机制[J]. , 2018, 39(2): 467-473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!