岩土力学 ›› 2019, Vol. 40 ›› Issue (12): 4607-4619.doi: 10.16285/j.rsm.2018.1831

• 基础理论与实验研究 • 上一篇    下一篇

渗透压作用对灰岩孔隙结构演化规律影响 的试验研究

宋战平1, 2,程昀1,杨腾添2, 3,霍润科1, 2,王军保1, 2,刘新荣4   

  1. 1. 西安建筑科技大学 土木工程学院,陕西 西安 710055;2. 西安建筑科技大学 陕西省岩土与地下空间工程重点实验室,陕西 西安 710055; 3. 中国铁建大桥工程局集团有限公司,天津 300300;4. 重庆大学 土木工程学院,重庆 400044
  • 收稿日期:2018-09-30 出版日期:2019-12-11 发布日期:2020-01-03
  • 作者简介:宋战平,男,1974年生,博士,教授,博士生导师,主要从事岩土工程领域的教学和科研工作。
  • 基金资助:
    国家自然科学基金(No.51578447);住房和城乡建设部科学技术计划项目(No.2017-K4-032)。

Experimental study of the influence of osmotic pressure on pore structure evolution in limestone

SONG Zhan-ping1, 2, CHENG Yun1, YANG Teng-tian2, 3, HUO Run-ke1, 2, WANG Jun-bao1, 2, LIU Xin-rong4   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; 2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China; 3. China Railway Bridge Engineering Bureau Group Co., Ltd., Tianjin 300300, China; 4. School of Civil Engineering, Chongqing University, Chongqing 400044, China
  • Received:2018-09-30 Online:2019-12-11 Published:2020-01-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51578447) and the Fund of Housing Urban and Rural Construction Technology Research and Development Project Foundation of China(2017-K4-032).

摘要: 富水隧道水岩作用的复杂性导致岩体内部孔隙结构的演化具有不稳定性,会诱发岩体的劣化、失稳等现象,这对地下渗流岩体稳定性的研究提出了更高的要求。为探究贵阳下麦西隧道灰岩在渗透水压作用下溶蚀孔隙结构的演化规律,对不同渗透水处理的灰岩试件进行了声发射、压汞、SEM及荧光光度试验,获得了灰岩溶蚀质量损失率、波形、频谱图、孔隙分布曲线及电镜扫描图像等。结果表明:灰岩质量损失率随渗透压增加呈缓慢增加?快速发展的发展趋势,渗透压分界点为6 MPa。随着渗透压增加,波形首波振幅逐渐衰减,波形曲线衰减较快且较早趋于稳定,波尾发育程度减缓。灰岩主频峰值逐渐衰减,由单峰向多峰演化,主频峰值与渗透压呈二次函数关系,且声波频率由(相对)高频段向低频段发展。溶蚀灰岩的大、中孔隙对渗透能力起到了决定性作用。随渗透压增加,灰岩累计进汞量呈指数函数增加,CaCO3和SiO2成分含量均呈指数函数变化。机械溶蚀较为敏感,化学溶蚀受溶蚀时间限制无法在短期内快速发展,机械溶蚀占据主导作用。建立的接触冲刷模型表明,渗透水的拖拽力取决于水流速度,而渗透压的提高则可增加单位体积的水压力梯度,进而提高水流速度。

关键词: 灰岩, 渗透压, 水岩作用, 孔隙, 溶蚀作用

Abstract: In karst water-enriched tunnel, due to the complexity of water-rock coupling effect, the evolution of pore structure in rock mass is unstable and will induce the deterioration and instability of rock mass, which puts forward higher requirements for the research of the stability of underground permeability rock mass. Firstly, to investigate the effect of osmotic pressure on the karst pore structure, osmotic test, acoustic emission test, mercury injection test, SEM test and fluorescence photometric test were carried out on limestone from Maixi tunnel, Guiyang, treated with different osmotic pressures. Then, the mass loss rates, P-wave patterns and frequency spectrum, pore distribution curves and scanning electron microscope images were obtained. Results show that the mass loss rates of limestone show the tendency of "slow increase-rapid development" with the increase of osmotic pressure, and the demarcation points of the two phases is 6 MPa. With the increase of osmotic pressure, the amplitude of head wave gradually decays, and the waveform curve first decays quickly and then tends to be stable early, and the development degree of wave tail gradually slows down. Also, it is found the peak of dominant frequency gradually decays and evolves from single peak to multiple peak and has excellent quadratic function with osmotic pressure, and that the wave frequency develops from (relatively) high frequency to low frequency. Besides, the macropores and mesopores formed by dissolution play a decisive role in the permeability of limestone. With the increase of osmotic pressure, the accumulation of mercury increases exponentially. Meanwhile, the mineral contents including CaCO3 and SiO2 change exponentially. Compared with chemical dissolution, mechanical dissolution is more sensitive to time and dominates the formation of pores. In additional, the established water-rock contacting dissolution model indicates that the drag force of osmotic water depends on its flow velocity, while the increase of osmotic pressure can enlarge the osmotic pressure gradient, thus increasing the flow velocity.

Key words: limestone, osmotic pressure, water-rock interaction, pore, dissolution action

中图分类号: 

  • TU 452
[1] 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131.
[2] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[3] 毛家骅, 袁大军, 杨将晓, 张兵, . 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292.
[4] 罗刚, 张辉傲, 马国涛, 周海文, 胡卸文, 王文健, 王文沛, . 高速岩质滑坡滑面滑动摩擦特性研究——以王山 抓口寺滑坡为例[J]. 岩土力学, 2020, 41(7): 2441-2452.
[5] 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970.
[6] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[7] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[8] 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642.
[9] 王刚, 秦相杰, 江成浩, 张振宇. 温度作用下CT三维重建煤体微观 结构的渗流和变形模拟[J]. 岩土力学, 2020, 41(5): 1750-1760.
[10] 牛庚, 邵龙潭, 孙德安, 韦昌富, 郭晓霞, 徐华. 土−水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195-1202.
[11] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[12] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[13] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[14] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[15] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!