›› 2018, Vol. 39 ›› Issue (9): 3139-3146.doi: 10.16285/j.rsm.2016.2668

• 基础理论与实验研究 • 上一篇    下一篇

非稳态热传导时层状路面体系的温度响应

王路君1, 2, 3, 4,艾智勇1, 2   

  1. 1. 同济大学 地下建筑与工程系,上海 200092;2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092; 3. 浙江大学 岩土工程研究所,浙江 杭州 310058;4. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
  • 收稿日期:2016-11-14 出版日期:2018-09-11 发布日期:2018-10-08
  • 通讯作者: 艾智勇,男,1966年生,博士,教授,博士生导师,主要从事岩土及地下工程方面的教学与研究工作。E-mail: zhiyongai@tongji.edu.cn E-mail:wanglujun007@163.com
  • 作者简介:王路君,男,1985年生,博士,博士后,主要从事海洋岩土工程及岩土工程多物理场耦合作用方面的研究工作
  • 基金资助:

    国家自然科学基金资助项目(No.50578121,No.41672275,No.51708494)。

Thermal responses of layered pavement system with unsteady heat conduction

WANG Lu-jun1, 2, 3, 4, AI Zhi-yong1, 2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 4. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2016-11-14 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (50578121, 41672275, 51708494).

摘要: 利用解析层元法推导温度荷载作用下非稳态热传导时层状路面体系的温度响应解答。从热弹性理论平面应变问题的控制方程出发,借助于Laplace-Fourier积分变换,推导出单层介质及下卧半平面的精确刚度矩阵即解析层元,结合有限层法原理及边界条件,组装并求解总刚度矩阵,得到其在变换域内的解答,最后通过相应的积分逆变换得到物理域内的真实解。由于该法刚度矩阵元素中不含正指数项,计算时不会出现溢出或病态矩阵的现象。编译了相应的计算程序,所得结果与有限元模拟结果吻合较好。在此基础上,对有限深度和半平面两种假定条件下的解答进行对比分析,并分析层状路面体系中位移和温度随时间的变化趋势及沿深度的分布规律。分析表明:温度场具有一定的影响深度,超过此深度,有限深度与半平面理论解答基本一致;温度荷载的影响深度与其强度有关,强度越大,其影响深度越深。

关键词: 非稳态热传导, 解析层元, 层状路面体系, 温度响应, 平面应变

Abstract: The analytical solutions of layered pavement system subjected to temperature loading are derived with the use of analytical layer-element method under unsteady heat conduction. Starting with the basic equations of plane strain problems of thermo-elasticity, the analytical layer-elements of a single layer and the underlying half-plane are obtained with the aid of Laplace-Fourier transform. Following the principle of the finite layer method and considering the boundary conditions, the total stiffness matrix is assembled and solved in the transformed domain, and the actual solutions in the physical domain are acquired by adopting the numerical inversion of Laplace-Fourier transform. Because positive exponential function is not included in the analytical layer-element, the computation overflow and ill-conditioned matrices can be avoided. Numerical results are obtained by corresponding computer procedures and are compared with those obtained by the finite element method, which shows a good agreement. The solutions under the assumption of a finite depth and a half-plane are derived and compared. Finally, the variation of vertical displacement and temperature increment along time factor and the distribution of vertical displacement along z direction are analyzed. The results reveal that the temperature change has a certain effect depth, and the results based on the finite depth assumption are consistent with those based on the half-plane assumption when the depth-of-interest is beyond the effect depth. The effect depth is related to the degree of temperature change, the greater the temperature intensity, the deeper the effect depth.

Key words: unsteady heat conduction, analytical layer-element, layered pavement system, thermal responses, plane strain

中图分类号: 

  • TU 470
[1] 艾智勇,慕金晶, . 竖向简谐荷载下二维层状饱和地基的解析层元解[J]. , 2018, 39(7): 2632-2638.
[2] 王路君,艾智勇, . 地埋点热源作用下层状半空间的热-力耦合响应[J]. , 2018, 39(6): 2052-2058.
[3] 艾智勇,张逸帆,王路君, . 层状横观各向同性地基平面应变问题的扩展精细积分解[J]. , 2018, 39(5): 1885-1890.
[4] 张伏光,蒋明镜, . 基坑土体卸荷平面应变试验离散元数值分析[J]. , 2018, 39(1): 339-348.
[5] 张 玉,邵生俊,陈 菲,丁 潇,张少军,. 不同应力路径条件下原状Q3黄土的强度特性及破坏方式试验研究[J]. , 2017, 38(S2): 99-106.
[6] 王志杰,Felix Jacobs,Martin Ziegler,. 土工格栅横肋对加筋砾石强度与变形特性的影响[J]. , 2017, 38(8): 2234-2240.
[7] 张 玉,何 晖,赵 敏,李宝平,丁 潇. 平面应变条件下原状黄土侧向卸载变形与强度特性分析[J]. , 2017, 38(5): 1233-1242.
[8] 邵龙潭,阎崇超,曾飞涛, . 土工平面应变仪压力室的改进[J]. , 2017, 38(5): 1251-1257.
[9] 庄 丽,宫全美,. 减围压平面应变压缩试验条件下丰浦砂中剪切带特性研究[J]. , 2016, 37(S1): 201-208.
[10] 刘海军,赵建军,巨能攀,. 岩质边坡倾倒破坏的力学分析[J]. , 2016, 37(S1): 289-294.
[11] 李 赞 ,雷国辉,付崔伟, . 砂墙地基二维固结自由应变解[J]. , 2016, 37(6): 1613-1622.
[12] 张 玉 ,邵生俊 ,王丽琴 ,马 林,. 平面应变条件下土的强度准则分析及验证[J]. , 2015, 36(9): 2501-2509.
[13] 罗爱忠 ,邵生俊,. 新型卧式土工平面应变仪研制[J]. , 2015, 36(7): 2117-2124.
[14] 龚文俊 ,曾立峰 ,孙军杰 ,李明永,. 基于中主应力修正关系的边坡稳定性分析[J]. , 2014, 35(11): 3111-3116.
[15] 马 林 ,赵队家 ,陈昌禄 . 平面应变下结构性对黄土基坑稳定性的影响[J]. , 2013, 34(S1): 419-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王先军,陈明祥,常晓林,周 伟,袁子厚. Drucker-Prager系列屈服准则在稳定分析中的应用研究[J]. , 2009, 30(12): 3733 -3738 .
[2] 杨 乐,许年春,谢贵华,吴德伦. 层状岩体地下洞室的Cosserat理论有限元分析[J]. , 2010, 31(3): 981 -985 .
[3] 雷明锋,彭立敏,施成华,安永林. 长大深基坑施工空间效应研究[J]. , 2010, 31(5): 1579 -1584 .
[4] 胡建华,周科平,罗先伟,邓红卫. 顶板诱导崩落爆破效果的全景探测与评价[J]. , 2010, 31(5): 1529 -1533 .
[5] 姚仰平,牛 雷,杨一帆,崔文杰,胡贺祥. 考虑温度影响的非饱和土本构模型[J]. , 2011, 32(10): 2881 -2888 .
[6] 孙 钧,戚玉亮. 隧道围岩稳定性正算反演分析研究 ——以厦门海底隧道穿越风化深槽施工安全监控为例介绍[J]. , 2010, 31(8): 2353 -2360 .
[7] 黄广龙,卫 敏,李 娟. 参数变异性对围护结构稳定性影响分析[J]. , 2010, 31(8): 2484 -2488 .
[8] 孟庆山,孔令伟,陈能远,范建海,郭 刚. 桩锚挡墙联合支护残积土边坡离心模型试验研究[J]. , 2010, 31(11): 3379 -3384 .
[9] 孔 亮. 基于颗粒物质力学与连续介质热力学的岩土本构模型初探[J]. , 2010, 31(S2): 1 -6 .
[10] 徐新生,燕 彬. 群桩与筏板的竖向动力相互作用研究[J]. , 2009, 30(1): 281 -284 .