›› 2018, Vol. 39 ›› Issue (9): 3223-3228.doi: 10.16285/j.rsm.2016.2629

• 基础理论与实验研究 • 上一篇    下一篇

黄土初始结构性对其压缩屈服的影响

王丽琴1, 2,邵生俊1, 2,赵 聪1,鹿忠刚1   

  1. 1. 西安理工大学 土木建筑工程学院,陕西 西安 710048;2. 西安理工大学 陕西省黄土力学与工程重点实验室,陕西 西安 710048
  • 收稿日期:2016-11-08 出版日期:2018-09-11 发布日期:2018-10-08
  • 作者简介:王丽琴,女,1976年生,博士,副教授,主要从事岩土工程方面的教学与研究工作。
  • 基金资助:

    国家自然科学基金项目(No.11572245,No.51608442);陕西省教育厅科研计划项目资助(No.17JS089);西安理工大学学科建设项目(No.2018-02-01)。

Effect of initial structural property of loess on its compressive yield

WANG Li-qin1, 2, SHAO Sheng-jun1, 2, ZHAO Cong1, LU Zhong-gang1   

  1. 1. School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 2. Shaanxi Key Laboratory of Loess Mechanics and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
  • Received:2016-11-08 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (11572245, 51608442), the Scientific Research Program of Shaanxi Provincial Education Department (17JS089) and the Discipline Construction Project of Xi'an University of Technology (2018-02-01).

摘要: 黄土是一种典型的具有结构强度的欠压密土,其特殊的结构性会使黄土的压缩曲线出现类似超固结土的明显转折点(对应的压力称为结构压缩屈服应力)。为分析黄土的初始结构性对其压缩屈服的影响,对6个场地的黄土进行了侧限压缩试验及单轴抗压强度试验,分别得到了各个场地不同含水率黄土的压缩屈服应力和构度指标。研究表明:黄土的构度指标与压缩屈服应力均随含水率的增大而减小,同时随含水率的增大,构度变化幅度小的黄土,其压缩屈服应力变化幅度也小;沉积时代相同的黄土,构度越大,其压缩屈服应力越大,两者呈线性关系;黄土的沉积时代不同,其构度与压缩屈服应力的线性关系就不同。分别给出了Q3、Q2黄土的构度与压缩屈服应力的线性关系式,并通过实例初步验证了此线性关系的适用性,为以构度为桥梁,利用简便易得的物理指标计算压缩屈服应力提供了一种途径。

关键词: 土力学, 原状黄土, 初始结构性, 构度指标, 压缩屈服

Abstract: Loess is a typical unconsolidated soil with structural strength. Its special structure results in an obvious turning point (where the pressure is called the compressive yield stress of structure) on its compression curve, similar to the curve of over-consolidated soil. To analyze the effect of initial structure on compressive yield of loess, confined compression tests and uniaxial compression strength tests were conducted on loess soils from six sites. The compressive yield stress and the structure index of loess with different water contents were obtained respectively. The results show that the structure index and the compressive yield stress of loess decrease with the increasing of water content. Meanwhile, with the increasing of water content, the variation of structure and variation of compressive yield stress are small. With the same sedimentary period of loess , greater structure index results in greater compressive yield stress. However, the linear relationship between structure index and compressive yield stress is different for the loess in the different sedimentary periods. The expressions of such correlations for Q3 (late pleistocene) loess and Q2 (middle pleistocene) loess are given respectively. Furthermore, the applicability of the correlations is verified by examples. Taking the structure as a bridge, there is a way to calculate compressive yield stress by using simple and easily available physical indexes.

Key words: soil mechanics, undisturbed loess, initial structure, structure index, compressive yield

中图分类号: 

  • TU 411
[1] 丑亚玲,郏书胜,张庆海,曹 伟,盛 煜,. 考虑结构性的冻融作用对黄土湿陷系数的影响[J]. , 2018, 39(8): 2715-2722.
[2] 方瑾瑾,冯以鑫,朱昌星,. 真三轴条件下Q3原状黄土的力学特性[J]. , 2018, 39(5): 1699-1708.
[3] 张 玉,邵生俊,陈 菲,丁 潇,张少军,. 不同应力路径条件下原状Q3黄土的强度特性及破坏方式试验研究[J]. , 2017, 38(S2): 99-106.
[4] 方瑾瑾,冯以鑫,邵生俊,. 真三轴条件下原状Q3黄土的土-水特征[J]. , 2017, 38(9): 2597-2604.
[5] 陈乐求,张家生,陈俊桦,陈积光,. 水泥改良泥质板岩粗粒土的静动力特性试验[J]. , 2017, 38(7): 1903-1910.
[6] 张 玉,何 晖,赵 敏,李宝平,丁 潇. 平面应变条件下原状黄土侧向卸载变形与强度特性分析[J]. , 2017, 38(5): 1233-1242.
[7] 方瑾瑾,邵生俊,冯以鑫,. 真三轴条件下Q3原状黄土的吸力变化特性研究[J]. , 2017, 38(4): 934-942.
[8] 浦少云,饶军应,杨凯强,黄质宏,李永辉,陈泽南,李 勤,刘汉卿,. 循环荷载下土体变形特性研究[J]. , 2017, 38(11): 3261-3270.
[9] 马冬冬,马芹永,袁 璞,姚兆明, . 主动围压状态人工冻结砂土SHPB试验与分析[J]. , 2017, 38(10): 2957-2961.
[10] 王铁行,杨 涛,鲁 洁. 干密度及冻融循环对黄土渗透性的各向异性影响[J]. , 2016, 37(S1): 72-78.
[11] 刘忠玉,陈 捷,李东阳,. 考虑剪应力作用的刚性挡土墙主动土压力分析[J]. , 2016, 37(9): 2443-2450.
[12] 吴旭阳,梁庆国,牛富俊,李春清,王丽丽,. 宝兰客运专线王家沟隧道原状黄土各向异性研究[J]. , 2016, 37(8): 2373-2382.
[13] 何春灿 ,胡新丽 ,龚 辉 ,谭福林 ,章 涵 ,张小勇,. 基于软硬石模板库的土石混合体细观损伤与力学特性分析[J]. , 2016, 37(10): 2993-3002.
[14] 蒋中明 ,龙 芳 ,熊小虎 ,冯树荣 ,钟辉亚,. 边坡稳定性分析中的渗透力计算方法考证[J]. , 2015, 36(9): 2478-2486.
[15] 邓亚虹 ,李 丽 ,慕焕东 ,王 鹏 ,李飞霞,. 西安地区地裂缝带Q3原状黄土流变特性试验研究[J]. , 2015, 36(7): 1847-1855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 覃小华,刘东升,宋强辉,王 旭,吴润泽,辛建平, . 强降雨条件下基岩型层状边坡入渗模型及稳定性研究[J]. , 2016, 37(11): 3156 -3164 .
[2] 魏厚振,颜荣涛,陈 盼,田慧会,吴二林,韦昌富. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. , 2011, 32(S2): 198 -203 .
[3] 王成华 ,阙 云,李新坡,张小刚. 粒状碎屑溜砂坡运动特征与动力数值分析 ——溜砂坡系列研究之二[J]. , 2007, 28(2): 219 -223 .
[4] 胡晓军,谭晓惠. 弹性抗滑桩全桩内力计算的地基反力荷载法[J]. , 2010, 31(1): 299 -303 .
[5] 孙志亮,孔令伟,郭爱国. 不同含水状态堆积体边坡地震响应特性大型振动台模型试验[J]. , 2018, 39(7): 2433 -2441 .
[6] 涂志军,崔 巍. 小湾水电站地下厂房岩锚梁现场试验研究[J]. , 2007, 28(6): 1139 -1144 .
[7] 周少怀 , 杨家岭. DDA数值方法及工程应用研究[J]. , 2000, 21(2): 123 -125 .
[8] 施维成 ,朱俊高 ,张坤勇 ,余 挺 . 平面应变条件下粗粒土的变形特性试验研究[J]. , 2013, 34(1): 101 -108 .
[9] 何建乔,魏厚振,孟庆山,王新志,韦昌富,. 大位移剪切下钙质砂破碎演化特性[J]. , 2018, 39(1): 165 -172 .
[10] 郭 健 ,王元汉 ,苗 雨 . 基于MPSO的RBF耦合算法的桩基动测参数辨识[J]. , 2008, 29(5): 1205 -1209 .