岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1890-1897.doi: 10.16285/j.rsm.2018.0041

• 基础理论与实验研究 • 上一篇    下一篇

大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析

张 帆1,马 耕1, 2, 3,冯 丹4   

  1. 1. 河南理工大学 能源科学与工程学院,河南 焦作 454003;2. 河南能源化工集团研究院有限公司,河南 郑州 450046; 3. 河南省低渗突出煤层煤与瓦斯共采工程技术研究中心,河南 郑州 450046;4. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044
  • 收稿日期:2018-01-08 出版日期:2019-05-11 发布日期:2019-06-02
  • 通讯作者: 马耕,男,1958年生,博士,教授级高级工程师,博士生导师,从事煤矿安全生产的技术管理工作。E-mail:mageng1958@163.com E-mail:379591198@qq.com
  • 作者简介:张帆,男,1990年生,博士研究生,从事煤层气抽采理论与技术方面的研究工作。
  • 基金资助:
    2016年国家科技部创新方法工作专项(No. 2016IM010400);2015年河南省科技攻关项目(No. 152102310095);河南省创新型科技人才队伍建设工程(No. 164100510024)。

Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions

ZHANG Fan1, MA Geng1, 2, 3, FENG Dan4   

  1. 1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China; 2.Research Institute of Henan Energy Resource and Chemical Industry Group Co. Ltd., Zhengzhou, Henan 450046, China; 3. Henan Engineering Research Center of Simultaneous Extraction of Coal and Gas with Low Permeability & Outburst Coal Seam, Zhengzhou, Henan 450046, China; 4. State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
  • Received:2018-01-08 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the Major Work on Innovation Methods of the Ministry of Science and Technology of China in 2016(2016IM010400), the Science and Technology Research Project of Henan Province in 2015 (152102310095) and the Innovative Talent Team Construction Project of Science and Technology of Henan Province (164100510024).

摘要: 水力压裂是一项广泛应用于低渗煤层的卸压增透技术。为了深入研究煤岩受力、天然裂缝、泵注排量对水力裂缝扩展规律及空间结构的影响,采用大尺寸真三轴水力压裂试验系统、压裂液中添加示踪剂等方式,在真三轴条件下对大尺寸煤岩进行了水力压裂试验。通过剖切压裂试样描述了水力裂缝扩展和空间展布规律,分析了裂缝宽度与应力之间的关系,并初步探讨了煤岩水力裂缝网络的形成机制。结果表明:(1)水力裂缝自割理处起裂并沿割理扩展、连接割理,进而形成复杂的裂缝网络结构;(2)水力裂缝受应力条件作用明显,当最大水平主应力和垂向应力相近,且远大于最小水平主应力时,易形成复杂的裂缝形态;(3)煤岩天然裂隙的存在是形成裂缝网络结构的前提,泵注排量对裂缝网络的形成也有重要影响; (4)煤岩裂隙在局部区域影响水力裂缝转向、分叉,但最终水力裂缝在扩展过程中逐渐转向至最大主应力方向;(5)水力压裂过程中,裂缝宽度的变化不仅与煤岩所受应力有关,还受到压裂液排量、天然裂缝等因素的影响。研究结果可以为煤岩裂缝网络的形成机制、现场施工参数的选取提供技术支持。

关键词: 煤层气, 水力压裂, 裂缝扩展, 裂缝网络, 裂缝宽度

Abstract: Hydraulic fracturing is a pressure relief and permeability enhancement technology widely applied in low permeable coal seam. To study the impacts of in-situ stress, natural fractures and flow rates on fracture propagation and fracture network, the true triaxial hydraulic fracturing experiments of large-scale coal seam were conducted on large-scale true triaxial hydraulic fracturing experimental system and tracer technique in hydraulic fluid. The propagation and geometry of hydraulic fractures were described by cutting the fractured specimen. The relationship between fracture width and in-situ stress was analyzed and fracture network mechanism in coal rock was studied. The experimental results indicate that: 1) Fracture network forms when hydraulic fractures propagate along cleats after initiation. 2) Hydraulic fracture is greatly affected by in-situ stress. Complex fracture morphology easily forms when maximum horizontal stress is close to vertical stress and both of them are much bigger than minimum horizontal stress. 3) Natural fractures in coal rock are the foundation of fracture network, which is also affected by flow rate. 4) Hydraulic fractures may steer and branch under the impacts of natural fractures at local, but they finally adjust the propagation to the direction of maximum horizontal stress. 5) During hydraulic fracturing process, the changes of fracture width are affected by factors include in-situ stress, flow rates, natural fractures in coal rock, etc. The results could provide technical support for understanding fracture network mechanism and determination of field fracturing parameters in CBM reservoir.

Key words: coalbed methane, hydraulic fracturing, fracture propagation, fracture network, fracture width

中图分类号: 

  • TD 712
[1] 邵长跃, 潘鹏志, 赵德才, 姚天波, 苗书婷, 郁培阳, . 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020, 41(7): 2411-2421.
[2] 武晋文, 冯子军, 梁栋, 鲍先凯, . 单轴应力下带钻孔花岗岩注入高温蒸汽 破坏特征研究[J]. 岩土力学, 2019, 40(7): 2637-2644.
[3] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[4] 徐辰宇, 白 冰, 刘明泽, . 注CO2条件下花岗岩破裂特征的试验研究[J]. 岩土力学, 2019, 40(4): 1474-1482.
[5] 李静, 孔祥超, 宋明水, 汪勇, 王昊, 刘旭亮, . 储层岩石微观孔隙结构对岩石力学特性 及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156.
[6] 李 栋, 卢义玉, 荣 耀, 周东平, 郭臣业, 张尚斌, 张承客, . 基于定向水力压裂增透的大断面瓦斯 隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369.
[7] 梁天成,刘云志,付海峰,严玉忠,修乃岭,王 臻. 多级循环泵注水力压裂模拟实验研究[J]. , 2018, 39(S1): 355-361.
[8] 程 万, 蒋国盛, 周治东, 魏子俊, 张 宇, 王炳红, 赵 林, . 水平井中多条裂缝同步扩展时裂缝竞争机制[J]. 岩土力学, 2018, 39(12): 4448-4456.
[9] 姜婷婷,张建华,黄 刚, . 煤岩水力压裂裂缝扩展形态试验研究[J]. , 2018, 39(10): 3677-3684.
[10] 蔡奇鹏,吴宏伟,胡 平,陈星欣,郭力群,. 隐伏裂缝对互层胶结土中正断层扩展影响研究[J]. , 2017, 38(7): 2015-2021.
[11] 严成增. 模拟水压致裂的另一种二维FDEM-flow方法[J]. , 2017, 38(6): 1789-1796.
[12] 陈江湛,曹 函,孙平贺,吴晶晶, . 三轴加载下煤岩脉冲水力压裂扩缝机制研究[J]. , 2017, 38(4): 1023-1031.
[13] 马 耕,张 帆,刘 晓,冯 丹,张鹏伟,. 地应力对破裂压力和水力裂缝影响的试验研究[J]. , 2016, 37(S2): 216-222.
[14] 曾义金,郭印同,杨春和,. 压裂过程中地面和井下倾斜场的主控因素研究[J]. , 2016, 37(S1): 79-87.
[15] 王 磊,杨春和,侯振坤,郭印同,魏元龙,蒋廷学,. 预制横缝条件下水力裂缝的起裂和扩展[J]. , 2016, 37(S1): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!