岩土力学 ›› 2019, Vol. 40 ›› Issue (11): 4178-4184.doi: 10.16285/j.rsm.2018.1612

• 基础理论与实验研究 • 上一篇    下一篇

基于广义热力学的超固结土本构模型

王秋生,周济兵   

  1. 北京工业大学 建筑工程学院,北京 100124
  • 收稿日期:2018-09-03 出版日期:2019-11-11 发布日期:2019-11-12
  • 作者简介:王秋生,男,1977年生,博士,副教授,主要从事土的本构关系、土石坝溃坝机制与风险调控方面的研究。
  • 基金资助:
    国家自然科学基金项目(No. 51679003);北京市教委项目(No. KM201610005010)

Generalized thermodynamics based constitutive model for over-consolidated clays

WANG Qiu-sheng, ZHOU Ji-bing   

  1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2018-09-03 Online:2019-11-11 Published:2019-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51679003) and the Project of Beijing Education Commission (KM201610005010).

摘要: 基于广义热力学基本理论,通过考虑塑性剪切变形产生的能量一部分以塑性自由能的形式储存,并且该部分自由能与超固结度相关,结合修正剑桥模型的热力学函数形式建立了适用于超固结土的自由能函数和耗散函数。该耗散函数与当前应力状态无关,相关联流动法则仍然适用。由建立的耗散函数和自由能函数,推导了弹塑性本构关系的屈服函数、流动法则、硬化定律。通过4种不同超固结土的试验结果和计算结果进行比较,验证了模型的合理性。

关键词: 热力学, 塑性剪切自由能, 超固结土, 本构模型

Abstract: The free energy and dissipation function for over consolidated clays are established, which are based on the generalized thermodynamic method and combined with the thermodynamic functions form of the modified Cam model. The energy generated by the plastic shear deformation is considered a part of free energy in the free energy function, and this partial free energy is related to the degree of over consolidation. When the degree of over consolidation decreases, the free energy generated by the plastic shear deformation also decreases. The dissipation function is independent of the current stress state, so the associated flow rule is still employed in this paper. Based on the free energy function and the dissipation function, all of the yield function, the flow law, the hardening law and the elastic law can be obtained with strict mathematical derivation from the two scalar functions. The final elastic-plastic incremental relation can then be obtained. Finally, the rationality of the model is verified by comparing the calculation and experimental results in stress and strain, volumetric strain of four different over consolidation clays.

Key words: thermo mechanics, plastic shear free energy, over consolidation, constitutive model

中图分类号: 

  • O 414.1
[1] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[2] 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336.
[3] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[4] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[5] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[6] 金青, 王艺霖, 崔新壮, 王成军, 张珂, 刘正银, . 拉拔作用下土工合成材料在风化料-废弃轮胎 橡胶颗粒轻质土中的变形行为研究[J]. 岩土力学, 2020, 41(2): 408-418.
[7] 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534.
[8] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[9] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[10] 何鹏飞, 马巍, 穆彦虎, 黄永庭, 董建华, . 黄土−砂浆块界面剪切特性试验及本构模型研究[J]. 岩土力学, 2019, 40(S1): 82-90.
[11] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[12] 张超, 杨期君, 曹文贵. 考虑峰值后区应力跌落速率的 脆岩损伤本构模型研究[J]. 岩土力学, 2019, 40(8): 3099-3106.
[13] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
[14] 王震, 朱珍德, 陈会官, 朱姝, . 冻融作用下岩石力-热-水耦合本构模型研究[J]. 岩土力学, 2019, 40(7): 2608-2616.
[15] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!