岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1473-1484.doi: 10.16285/j.rsm.2020.1107

• 数值分析 • 上一篇    

基于光滑粒子流体动力学方法的 泥石流冲击桥墩试验模拟

梁恒1,李吉林2,刘发明3,张伦4,付刚3,李明清3,何思明1   

  1. 1. 中国科学院成都山地灾害与环境研究所 山地灾害与地表过程重点实验室,四川 成都 610041;2. 中国国家铁路集团有限公司,北京 100844; 3. 中国中铁二院工程集团有限责任公司,四川 成都 610031;4. 成兰铁路有限责任公司,四川 成都 610031
  • 收稿日期:2020-07-29 修回日期:2020-12-28 出版日期:2021-05-11 发布日期:2021-05-08
  • 作者简介:梁恒,男,1991年生,博士,助理研究员,主要从事滑坡、泥石流形成演化机制及数值模拟方法研究
  • 基金资助:
    铁道部科技研究开发计划重大课题(No. Z2012-061);国家自然科学基金重大项目(No. 41790433);铁总试验专项(No. CLRQT-2015-012);中国中铁科研项目(2012-重大-3);中国科学院重点部署项目(地震次生灾害风险与防控-KFZD-SW-424);四川省科技厅重点研发计划(No. 19ZDYF2709)。

Simulation of debris flow impacting bridge pier tests based on smooth particle hydromechanics method

LIANG Heng1, LI Ji-lin2, LIU Fa-ming3, ZHANG Lun4, FU Gang3, LI Ming-qing3, HE Si-ming1   

  1. 1. Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; 2. China State Railway Group Co. Ltd., Beijing 100844; 3. China Railway Eryuan Engineering Group Co. Ltd, Chengdu, Sichuan 610031, China; 4. Chengdu Lanzhou Railway CO., Ltd., Chengdu, Sichuan 610031, China
  • Received:2020-07-29 Revised:2020-12-28 Online:2021-05-11 Published:2021-05-08
  • Supported by:
    This work was supported by the Major Project of Science and Technology Research and Development Program of Ministry of Railways (Z2012-061), the Major Projects of the National Natural Science Foundation of China (41790433), the Special Experimental Project of China Railway (CLRQT-2015-012), the Research Project of China Railway (2012-major-3), the Key Deployment Projects of CAS (KFZD-SW-424) and the Key Research and Development Program of Sichuan Province (19ZDYF2709).

摘要: 采用Bingham流体模型描述泥石流的动力学行为,将桥墩视为地形条件,在光滑粒子流体动力学(smooth particle hydromechanics,简称SPH)方法的框架上引入边界斥力改进边界条件,构建了泥石流冲击桥墩的三维数值计算模型。基于水槽试验对不同黏性的泥石流冲击桥墩的堆积过程及冲击力时程曲线特性进行了分析,根据水槽试验建立物理模型,实现了不同流变参数和重度的泥石流冲击桥墩的三维动力演化过程模拟,并对不同流变参数的泥石流堆积过程及冲击力时程曲线模拟结果进行了分析。从流体力学的角度对模拟结果进行分析,指出忽略湍流形成的能量耗散是导致稀性泥石流运动过程模拟与试验结果差异的主要原因,并讨论了不同黏性条件下泥石流冲击桥墩的防护措施。研究成果为泥石流冲击桥墩三维数值计算模型的进一步优化提供了理论支撑。

关键词: SPH方法, 泥石流, 桥墩, 冲击, 流固耦合

Abstract: In this paper, a three-dimensional numerical simulation model is established based on smooth particle hydrodynamics (SPH) method. In this model, the dynamic behavior of debris flow is described by using the Bingham fluid model, and the bridge pier is regarded as the terrain condition. The repulsive force at the boundary is introduced to improve the boundary condition. Based on flume experiments, the accumulation processes of debris flow impacting the bridge pier with various viscosities and characteristics of the impact force-time curves are analyzed. The physical models are established, and the simulation of three-dimensional dynamic evolution processes of debris flow impacting the bridge pier with various rheological parameters and weights are realized. Moreover, the simulation results of the accumulation processes of debris flow with various rheological parameters and the impact force-time curves are analyzed. It is found that there are differences between the simulation results and the experimental results of the dynamic evolution processes of low-viscous debris flow impacting the bridge pier. From the view of fluid mechanics, the primary reason lies in the ignorance of the energy dissipation owing to lack of a description of Reynolds stresses caused by turbulence. Besides, the bridge pier safeguard procedures under the impact of debris flow with various viscosities are discussed. This work provides a theoretical support for further optimization of the three-dimensional numerical calculation model of debris flow impacting the bridge pier.

Key words: SPH method, debris flow, bridge pier, impact, fluid-solid interaction

中图分类号: 

  • P 642.23
[1] 蔡灿, 张沛, 孙明光, 杨迎新, 谢松, 蒲治成, 杨显鹏, 高超, 谭政博, . 油气钻井中的分离式冲击−切削复合破岩机制研究[J]. 岩土力学, 2021, 42(9): 2535-2544.
[2] 吴振华, 潘鹏志, 潘俊锋, 王兆丰, 高家明. 地堑构造区冲击地压发生机制及矿震活动规律[J]. 岩土力学, 2021, 42(8): 2225-2238.
[3] 王爱文, 高乾书, 潘一山, . 煤层钻孔降倾-控变-耗能防冲机制试验研究[J]. 岩土力学, 2021, 42(5): 1230-1244.
[4] 姚精明, 许自文, 王建, 王路. 锚杆−泡沫铝联合支护防治冲击地压试验研究[J]. 岩土力学, 2021, 42(3): 620-626.
[5] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[6] 安笑, 潘华利, 欧国强, 孔玲, 李炳志, . 恒定渗流作用泥石流碎屑物质起动判别模型研究[J]. 岩土力学, 2020, 41(S1): 115-122.
[7] 叶阳, 曾亚武, 杜欣, 孙翰卿, 陈曦, . 球形砾石碰撞损伤破碎三维离散元模拟研究[J]. 岩土力学, 2020, 41(S1): 368-378.
[8] 程亮, 许江, 周斌, 彭守建, 闫发志, 杨孝波, 杨文健. 不同瓦斯压力对煤与瓦斯突出两相流 传播规律的影响研究[J]. 岩土力学, 2020, 41(8): 2619-2626.
[9] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[10] 陈光波, 秦忠诚, 张国华, 李谭, 李敬凯, . 受载煤岩组合体破坏前能量分布规律[J]. 岩土力学, 2020, 41(6): 2021-2033.
[11] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[12] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[13] 王凯兴, 窦林名, 潘一山, OPARIN V N . 块系岩体非协调动力响应特征试验研究[J]. 岩土力学, 2020, 41(4): 1227-1234.
[14] 周恩全, 宗之鑫, 王琼, 陆建飞, 左熹. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
[15] 王青元, 刘杰, 王培涛, 刘飞, . 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(3): 781-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[6] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[10] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .